With the substantial social and medical burden of addiction, there is considerable interest in understanding risk factors that increase the development of addiction. A key feature of alcohol use disorder (AUD) is compulsive alcohol (EtOH) drinking, where EtOH drinking becomes “inflexible” after chronic intake, and animals, such as humans with AUD, continue drinking despite aversive consequences. Further, since there is a heritable component to AUD risk, some work has focused on genetically-selected, EtOH-preferring rodents, which could help uncover critical mechanisms driving pathological intake. In this regard, aversion-resistant drinking (ARD) takes >1 month to develop in outbred Wistar rats (and perhaps Sardinian-P EtOH-preferring rats). However, ARD has received limited study in Indiana P-rats, which were selected for high EtOH preference and exhibit factors that could parallel human AUD (including front-loading and impulsivity). Here, we show that P-rats rapidly developed compulsion-like responses for EtOH; 0.4 g/L quinine in EtOH significantly reduced female and male intake on the first day of exposure but had no effect after one week of EtOH drinking (15% EtOH, 24 h free-choice paradigm). Further, after 4−5 weeks of EtOH drinking, males but not females showed resistance to even higher quinine (0.5 g/L). Thus, P-rats rapidly developed ARD for EtOH, but only males developed even stronger ARD with further intake. Finally, rats strongly reduced intake of quinine-adulterated water after 1 or 5 weeks of EtOH drinking, suggesting no changes in basic quinine sensitivity. Thus, modeling ARD in P-rats may provide insight into mechanisms underlying genetic predispositions for compulsive drinking and lead to new treatments for AUDs.
Abstract Rats have the ability to learn and perform sophisticated behavioral tasks, making them very useful for investigating neural circuit functions. In contrast to the extensive mouse genetic toolkit, the paucity of recombinase-expressing rat models has limited the ability to monitor and manipulate molecularly-defined neural populations in this species. Here we report the generation and validation of two knock-in rat strains expressing either Cre or Flp recombinase under the control of Parvalbumin (Pvalb) , a gene expressed in the critical “fast-spiking” subset of inhibitory interneurons (FSIs). These strains were generated with CRISPR-Cas9 gene editing and show highly specific and penetrant labeling of Pvalb -expressing neurons, as demonstrated by in situ hybridization and immunohistochemistry. We validated these models in both prefrontal cortex and striatum using both ex vivo and in vivo approaches, including whole-cell recording, optogenetics, extracellular physiology and photometry. Our results demonstrate the utility of these new transgenic models for a wide range of neuroscience experiments.
Abstract Compulsive alcohol drinking, where intake persists regardless of adverse consequences, plays a major role in the substantial costs of alcohol use disorder. However, the processes that promote aversion‐resistant drinking remain poorly understood. Compulsion‐like responding has been considered automatic and reflexive and also to involve higher motivation, since drinking persists despite adversity. Thus, we used lickometry, where microstructural behavioral changes can reflect altered motivation, to test whether conflict‐resistant intake [quinine‐alcohol (QuiA)] reflected greater automaticity or motivation relative to alcohol‐only drinking (Alc). Front‐loading during QuiA and Alc suggested incentive to drink in both. However, the relationship between total licking and intake was less variable during QuiA, as was lick volume, without changes in average responding. QuiA bout organization was also less variable, with fewer licks outside of bouts (stray licks) and fewer gaps within bouts. Interestingly, QuiA avoidance of stray licking continued into short bouts, with fewer short and more medium‐length bouts, which was striking given their minor impact on intake. Instead, more effort at bout onset could allow short bouts to persist longer. Indeed, while QuiA licking was overall faster, QuiA bouts were especially fast at bout initiation. However, few QuiA changes individually predicted greater intake, perhaps suggesting an overarching strategy during aversion‐resistant responding. Thus, our results indicate that aversion‐resistant intake exhibited less variability, where increased automaticity could decrease need for awareness, and stronger bout initiation, which might prolong responding despite adversity. This may reflect a collective strategy, which we call Head Down and Push responding that facilitates conflict‐resistant, compulsion‐like intake.
A lack of dystrophin results in muscle degeneration in Duchenne muscular dystrophy. Dystrophin-deficient human and mouse muscle cells have higher resting levels of intracellular free calcium ([Ca2+]i) and show a related increase in single-channel open probabilities of calcium leak channels. Elevated [Ca2+]i results in high levels of calcium-dependent proteolysis, which in turn increases calcium leak channel activity. This process could initiate muscle degeneration by further increasing [Ca2+]i and proteolysis in a positive feedback loop. Here, we tested the direct effect of restoration of dystrophin on [Ca2+]i and channel activity in primary myotubes from mdx mice made transgenic for full-length dystrophin. Transgenic mdx mice have been previously shown to have normal dystrophin localization and no muscle degeneration. Fura-2 calcium measurements and single-channel patch recordings showed that resting [Ca2+]i levels and open probabilities of calcium leak channels of transgenic mdx myotubes were similar to normal levels and significantly lower than mdx littermate controls (mdx) that lack dystrophin. Thus, restoration of normal calcium regulation in transgenic mdx mice may underlie the resulting absence of degeneration.
Drug addiction is mediated by complex neuronal processes that converge on the shell of the nucleus accumbens (NAcSh). The NAcSh receives inputs from the lateral hypothalamus (LH), where self-stimulation can be induced. Melanin-concentrating hormone (MCH) is produced mainly in the LH, and its receptor (MCH1R) is highly expressed in the NAcSh. We found that, in the NAcSh, MCH1R is coexpressed with dopamine receptors (D1R and D2R), and that MCH increases spike firing when both D1R and D2R are activated. Also, injecting MCH potentiates cocaine-induced hyperactivity in mice. Mice lacking MCH1R exhibit decreased cocaine-induced conditioned place preference, as well as cocaine sensitization. Using a specific MCH1R antagonist, we further show that acute blockade of the MCH system not only reduces cocaine self-administration, but also attenuates cue- and cocaine-induced reinstatement. Thus, the MCH system has an important modulatory role in cocaine reward and reinforcement by potentiating the dopaminergic system in the NAcSh, which may provide a new rationale for treating cocaine addiction.
Abstract There is much interest in brain regions that drive nicotine intake in smokers. Interestingly, both the rewarding and aversive effects of nicotine are probably critical for sustaining nicotine addiction. The medial and lateral habenular (LHb) nuclei play important roles in processing aversion, and recent work has focused on the critical involvement of the LHb in encoding and responding to aversive stimuli. Several neurotransmitter systems are implicated in nicotine’s actions, but very little is known about how nicotinic acetylcholine receptors (nAChRs) regulate LHb activity. Here we report in brain slices that activation of nAChRs depolarizes LHb cells and robustly increases firing, and also potentiates glutamate release in LHb. These effects were blocked by selective antagonists of α6-containing (α6*) nAChRs, and were absent in α6*-nAChR knockout mice. In addition, nicotine activates GABAergic inputs to LHb via α4β2-nAChRs, at lower concentrations but with more rapid desensitization relative to α6*-nAChRs. These results demonstrate the existence of diverse functional nAChR subtypes at presynaptic and postsynaptic sites in LHb, through which nicotine could facilitate or inhibit LHb neuronal activity and thus contribute to nicotine aversion or reward.