We present detections of [OIII]$\lambda$4363 and direct-method metallicities for star-forming galaxies at $z=1.7-3.6$. We combine new measurements from the MOSFIRE Deep Evolution Field (MOSDEF) survey with literature sources to construct a sample of 18 galaxies with direct-method metallicities at $z>1$, spanning $7.5<1$2+log(O/H$)<8.2$ and log(M$_*$/M$_{\odot})=7-10$. We find that strong-line calibrations based on local analogs of high-redshift galaxies reliably reproduce the metallicity of the $z>1$ sample on average. We construct the first mass-metallicity relation at $z>1$ based purely on direct-method O/H, finding a slope that is consistent with strong-line results. Direct-method O/H evolves by $\lesssim0.1$ dex at fixed M$_*$ and SFR from $z\sim0-2.2$. We employ photoionization models to constrain the ionization parameter and ionizing spectrum in the high-redshift sample. Stellar models with super-solar O/Fe and binary evolution of massive stars are required to reproduce the observed strong-line ratios. We find that the $z>1$ sample falls on the $z\sim0$ relation between ionization parameter and O/H, suggesting no evolution of this relation from $z\sim0$ to $z\sim2$. These results suggest that the offset of the strong-line ratios of this sample from local excitation sequences is driven primarily by a harder ionizing spectrum at fixed nebular metallicity compared to what is typical at $z\sim0$, naturally explained by super-solar O/Fe at high redshift caused by rapid formation timescales. Given the extreme nature of our $z>1$ sample, the implications for representative $z\sim2$ galaxy samples at $\sim10^{10}$ M$_{\odot}$ are unclear, but similarities to $z>6$ galaxies suggest that these conclusions can be extended to galaxies in the epoch of reionization.
Abstract We investigate the nature of the relation among stellar mass, star formation rate, and gas-phase metallicity (the –SFR– Z relation) at high redshifts using a sample of 260 star-forming galaxies at z ∼ 2.3 from the MOSDEF survey. We present an analysis of the high-redshift –SFR– Z relation based on several emission-line ratios for the first time. We show that a –SFR– Z relation clearly exists at z ∼ 2.3. The strength of this relation is similar to predictions from cosmological hydrodynamical simulations. By performing a direct comparison of stacks of z ∼ 0 and z ∼ 2.3 galaxies, we find that z ∼ 2.3 galaxies have ∼0.1 dex lower metallicity at fixed and SFR. In the context of chemical evolution models, this evolution of the –SFR– Z relation suggests an increase with redshift of the mass-loading factor at fixed , as well as a decrease in the metallicity of infalling gas that is likely due to a lower importance of gas recycling relative to accretion from the intergalactic medium at high redshifts. Performing this analysis simultaneously with multiple metallicity-sensitive line ratios allows us to rule out the evolution in physical conditions (e.g., N/O ratio, ionization parameter, and hardness of the ionizing spectrum) at fixed metallicity as the source of the observed trends with redshift and with SFR at fixed at z ∼ 2.3. While this study highlights the promise of performing high-order tests of chemical evolution models at high redshifts, detailed quantitative comparisons ultimately await a full understanding of the evolution of metallicity calibrations with redshift.
We present the first direct comparison between Balmer line and panchromatic SED-based SFRs for z~2 galaxies. For this comparison we used 17 star-forming galaxies selected from the MOSFIRE Deep Evolution Field (MOSDEF) survey, with $3\sigma$ detections for H$\alpha$ and at least two IR bands (Spitzer/MIPS 24$\mu$m and Herschel/PACS 100 and 160$\mu$m, and in some cases Herschel/SPIRE 250, 350, and 500$\mu$m). The galaxies have total IR (8-1000$\mu$m) luminosities of $\sim10^{11.4}-10^{12.4}\,\textrm{L}_\odot$ and star-formation rates (SFRs) of $\sim30-250\,\textrm{M}_\odot\,\mathrm{yr^{-1}}$. We fit the UV-to-far-IR SEDs with flexible stellar population synthesis (FSPS) models - which include both stellar and dust emission - and compare the inferred SFRs with the SFR(H$\alpha$,H$\beta$) values corrected for dust attenuation using Balmer decrements. The two SFRs agree with a scatter of 0.17 dex. Our results imply that the Balmer decrement accurately predicts the obscuration of the nebular lines and can be used to robustly calculate SFRs for star-forming galaxies at z~2 with SFRs up to $\sim200\,\textrm{M}_\odot\,\mathrm{yr^{-1}}$. We also use our data to assess SFR indicators based on modeling the UV-to-mid-IR SEDs or by adding SFR(UV) and SFR(IR), for which the latter is based on the mid-IR only or on the full IR SED. All these SFRs show a poorer agreement with SFR(H$\alpha$,H$\beta$) and in some cases large systematic biases are observed. Finally, we show that the SFR and dust attenuation derived from the UV-to-near-IR SED alone are unbiased when assuming a delayed exponentially declining star-formation history.
This paper presents a graphical procedure for simultaneously distinguishing between two commonly encountered data anomaliesWhen applied in the context of one anomaly, a family of parallel lines will be estimated, and when applied in the contextofthe second anomaly, a family of lines, whose members all pass through the same point, will be estimated. It is shown that the procedure can be applied effectively using samples containing as few as two hundred bivariate observations.
Abstract We study the properties of 30 spectroscopically identified pairs of galaxies observed during the peak epoch of star formation in the universe. These systems are drawn from the MOSFIRE Deep Evolution Field (MOSDEF) Survey at 1.4 ≤ z ≤ 3.8, and are interpreted as early-stage galaxy mergers. Galaxy pairs in our sample are identified as two objects whose spectra were collected on the same Keck/MOSFIRE spectroscopic slit. Accordingly, all pairs in the sample have projected separations R proj ≤ 60 kpc. The velocity separation for pairs was required to be Δ v ≤ 500 km s −1 , which is a standard threshold for defining interacting galaxy pairs at low redshift. Stellar mass ratios in our sample range from 1.1 to 550, with 12 ratios closer than or equal to 3:1, the common definition of a “major merger.” Studies of merging pairs in the local universe indicate an enhancement in star formation activity and deficit in gas-phase oxygen abundance relative to isolated galaxies of the same mass. We compare the MOSDEF pairs sample to a control sample of isolated galaxies at the same redshift, finding no measurable SFR enhancement or metallicity deficit at fixed stellar mass for the pairs sample. The lack of significant difference between the average properties of pairs and control samples appears in contrast to results from low-redshift studies, although the small sample size and lower signal-to-noise of the high-redshift data limit definitive conclusions on redshift evolution. These results are consistent with some theoretical works, suggesting a reduced differential effect of precoalescence mergers on galaxy properties at high redshift—specifically that precoalescence mergers do not drive strong starbursts.
Abstract We present a Keck/MOSFIRE rest-optical composite spectrum of 16 typical gravitationally lensed star-forming dwarf galaxies at 1.7 ≲ z ≲ 2.6 ( z mean = 2.30), all chosen independent of emission-line strength. These galaxies have a median stellar mass of log(M*/M⊙)med=8.29−0.43+0.51 and a median star formation rate of SFRHαmed=2.25−1.26+2.15M⊙yr−1 . We measure the faint electron-temperature-sensitive [O iii ] λ 4363 emission line at 2.5 σ (4.1 σ ) significance when considering a bootstrapped (statistical-only) uncertainty spectrum. This yields a direct-method oxygen abundance of 12+log(O/H)direct=7.88−0.22+0.25 ( 0.15−0.06+0.12Z⊙ ). We investigate the applicability at high z of locally calibrated oxygen-based strong-line metallicity relations, finding that the local reference calibrations of Bian et al. best reproduce (≲0.12 dex) our composite metallicity at fixed strong-line ratio. At fixed M * , our composite is well represented by the z ∼ 2.3 direct-method stellar mass—gas-phase metallicity relation (MZR) of Sanders et al. When comparing to predicted MZRs from the IllustrisTNG and FIRE simulations, having recalculated our stellar masses with more realistic nonparametric star formation histories (log(M*/M⊙)med=8.92−0.22+0.31) , we find excellent agreement with the FIRE MZR. Our composite is consistent with no metallicity evolution, at fixed M * and SFR, of the locally defined fundamental metallicity relation. We measure the doublet ratio [O ii ] λ 3729/[O ii ] λ 3726 = 1.56 ± 0.32 (1.51 ± 0.12) and a corresponding electron density of ne=1−0+215cm−3 ( ne=1−0+74cm−3 ) when considering the bootstrapped (statistical-only) error spectrum. This result suggests that lower-mass galaxies have lower densities than higher-mass galaxies at z ∼ 2.
Abstract It is both surprising and exciting to find that young galaxies at high redshift contain large dust masses. For galaxies at z > 5, after only 1 Gyr, there has not been time for low-mass stars to have evolved to the AGB phase and produce dust. In such galaxies, Type II SNe and red supergiants (RSGs) may even dominate the dust production rate. It has long been known that RSG atmospheres produce dust, but little is known about it. We are pursuing three parallel studies to better understand RSG dust. First, we are using optical spectra and JHK photometry to characterize the optical and near-IR extinction curves of the RSGs. Second, we are using the optical spectra combined with 2MASS, IRAC and MIPS photometry to estimate the dust mass loss rates from Local Group RSGs. In addition, we will use our Monte Carlo radiative transfer models to analyze the emission from dust in the circumstellar shells. Third, the final piece of the puzzle is being provided by obtaining new IRS spectra of LMC and SMC RSGs. We plan to use the IRS to make a systematic study of the dust properties in RSG shells in the LMC and SMC so that we can probe how they may vary with a large range of galactic metallicities. The derived stellar SEDs and extinction curves will be combined with Spitzer IRAC and MIPS photometry and IRS spectra for use as inputs to our Monte Carlo codes which will be used to study the composition, size distributions and clumpiness of the dust.
We present new Spitzer/IRS spectra of two hot R Coronae Borealis (RCB) stars, one in the Galaxy,V348 Sgr, and one lying in the LMC, HV 2671. These two objects may constitute a link between the RCB stars and the late Wolf-Rayet ([WCL]) class of central stars of planetary nebula (CSPNe) such as CPD -56 8032 that has little or no hydrogen in their atmospheres. HV 2671 and V348 Sgr are members of a rare subclass that has significantly higher effective temperatures than most RCB stars, but sharing the traits of hydrogen deficiency and dust formation that define the cooler RCB stars. The [WC] CSPNe star, CPD -56 8032, displays evidence for dual-dust chemistry showing both PAHs and crystalline silicates in its mid-IR spectrum. HV 2671 shows strong PAH emission but shows no sign of having crystalline silicates. The spectrum of V348 Sgr is very different from those of CPD -56 8032 and HV 2671. The PAH emission seen strongly in the other two stars is not present. Instead, the spectrum is dominated by a broad emission centered at about 8.2 micron. The mid-IR spectrum of CPD -56 8032 shows emission features that may be associated with C60. The other two stars do not show evidence for C60. HV 2671 has also been detected by Herschel/PACS and SPIRE. V348 Sgr and CPD -56 8032 have been detected by AKARI/FIS. These data were combined with Spitzer, IRAS, 2MASS and other photometry to produce their spectral energy distributions from the visible to the far-IR. Monte Carlo radiative transfer modeling was used to study the circumstellar dust around these stars. HV 2671 and CPD -56 8032 require both a flared inner disk with warm dust and an extended diffuse envelope with cold dust to to fit their SEDs. The SED of V348 Sgr can be fit with a much smaller disk and envelope.