Dipeptidyl peptidase 4 (DPP-4) and neprilysin (NEP) rapidly degrade glucagon-like peptide 1 (GLP-1) in mice. Commercially available sandwich ELISA kits may not accurately detect the degradation products, leading to potentially misleading results. We aimed to stabilize GLP-1 in mice, allowing reliable measurement with sensitive commercially available ELISA kits. Nonanesthetized male C57Bl/6JRj mice were subjected to an oral glucose tolerance test (OGTT; 2 g/kg glucose), and plasma total and intact GLP-1 were measured (Mercodia and Alpco ELISA kits, respectively). No GLP-1 increases were seen in samples taken beyond 15 min after the glucose load. Samples taken at 5 and 10 min after the OGTT showed a minor increase in total, but not intact, GLP-1. We then administered saline (control), or a DPP-4 inhibitor (valine pyrrolidide or sitagliptin) with or without an NEP-inhibitor (sacubitril), 30 min before the OGTT. In the inhibitor groups only, intact GLP-1 increased significantly during the OGTT. After injecting male C57Bl/6JRj mice with a known dose of GLP-1(7-36)NH2, peak GLP-1 levels were barely detectable after saline but were 5- to 10-fold higher during sitagliptin and the combination of sitagliptin/sacubitril. The half-life of the GLP-1 plasma disappearance increased up to sevenfold during inhibitor treatment. We conclude that reliable measurement of GLP-1 secretion is not possible in mice in vivo with commercially available sandwich ELISA kits, unless degradation is prevented by inhibition of DPP-4 and perhaps NEP. The described approach allows improved estimates of GLP-1 secretion for future studies, although it is a limitation that these inhibitors additionally influence levels of insulin and glucagon. Article Highlights
Low-abundance regulatory peptides, including metabolically important gut hormones, have shown promising therapeutic potential. Here, we present a streamlined mass spectrometry-based platform for identifying and characterizing low-abundance regulatory peptides in humans. We demonstrate the clinical applicability of this platform by studying a hitherto neglected glucose- and appetite-regulating gut hormone, namely, oxyntomodulin. Our results show that the secretion of oxyntomodulin in patients with type 2 diabetes is significantly impaired, and that its level is increased by more than 10-fold after gastric bypass surgery. Furthermore, we report that oxyntomodulin is co-distributed and co-secreted with the insulin-stimulating and appetite-regulating gut hormone glucagon-like peptide-1 (GLP-1), is inactivated by the same protease (dipeptidyl peptidase-4) as GLP-1 and acts through its receptor. Thus, oxyntomodulin may participate with GLP-1 in the regulation of glucose metabolism and appetite in humans. In conclusion, this mass spectrometry-based platform is a powerful resource for identifying and characterizing metabolically active low-abundance peptides.
<p dir="ltr">Dipeptidyl peptidase (DPP)-4 and neprilysin (NEP) rapidly degrade glucagon-like peptide 1 (GLP-1) in mice. Commercially available sandwich ELISA kits may not accurately detect the degradation products, leading to potentially misleading results. We aimed to stabilize GLP-1 in mice allowing reliable measurement with sensitive commercially available ELISA kits. Non-anesthetized male C57Bl/6JRj mice were subjected to an oral glucose tolerance test (OGTT; 2 g/kg glucose), and plasma total and intact GLP-1 were measured (Mercodia and Alpco ELISA kits, respectively). No GLP-1 increases were seen in samples taken beyond 15 minutes after the glucose load. Samples taken at 5 and 10 minutes after the OGTT showed a minor increase in total, but not intact GLP-1. We then administered saline (control), or a DPP-4 inhibitor (valine pyrrolidide or sitagliptin) with or without a NEP-inhibitor (sacubitril) 30 minutes before the OGTT. In the inhibitor groups only, intact GLP-1 increased significantly during the OGTT. After injecting male C57Bl/6JRj mice with a known dose of GLP-1(7-36)NH<sub>2</sub>, peak GLP-1 levels were barely detectable after saline, but 5-10-fold higher during sitagliptin and the combination of sitagliptin/sacubitril. The half-life of the GLP-1 plasma disappearance increased up to 7-fold during inhibitor treatment. We conclude that reliable measurement of GLP-1 secretion is not possible in mice in vivo with commercially available sandwich ELISA kits, unless degradation is prevented by inhibition of DPP-4 and perhaps neprilysin. The described approach allows improved estimates of GLP-1 secretion for future studies, although it is a limitation that these inhibitors additionally influence levels of insulin and glucagon.</p>
Abstract Dipeptidyl peptidase (DPP)-4 and neprilysin (NEP) within few minutes degrade glucagon-like peptide 1 (GLP-1) in mice, generating small, inactive fragments of the peptide. Commercially available sandwich ELISA kits may not accurately detect intact GLP-1 (that is GLP-1[7–36]NH 2 ) and these moieties, leading to underestimation of secretion and potentially misleading results. Single-site antibody approaches may pick up some fragments, yet require large plasma volumes and the accuracy is uncertain. We aimed to find a way to stabilize GLP-1 in mice allowing reliable measurement with sensitive commercially available ELISA kits. Non-anesthetized male C57Bl/6JRj mice were subjected to an oral glucose tolerance test (OGTT; 2 g/kg glucose via oral gavage). Blood was drawn from the retrobulbar plexus before and repeatedly during the OGTT and total and intact GLP-1 were measured by commercially available sandwich ELISA kits (Mercodia and Alpco, respectively). In blood samples taken 15 minutes after the glucose load, there were no increase in plasma GLP-1 concentration. There was a small insignificant increase in total GLP-1 (1-2 pmol/L) in samples taken at t=5 and t=10 minutes following the OGTT, but no rise in intact GLP-1. We then administered control (saline), or a DPP-4 inhibitor (valine pyrrolidide, 0.1 µmol/g or sitagliptin, 10 mg/kg) with or without a NEP-inhibitor (sacubitril, 0.3 mg/kg) 30 minutes before the OGTT. In the four inhibitor groups, intact GLP-1 increased during the OGTT (levels ranging between 4.04 [SD 2.87] and 15.53 [SD 6.76] pmol/L). The combination of sitagliptin with sacubitril gave the largest increase in intact GLP-1 levels. Finally, after injecting male C57Bl/6JRj mice with a known dose of GLP-1(7–36)NH 2 , the peak GLP-1 levels were significantly higher during sitagliptin, but not with the combination of sitagliptin/sacubitril. Both inhibitor groups, however, showed prolonged half-life of the GLP-1 plasma disappearance. We conclude that for measurements of GLP-1 secretion in mice with commercially available sandwich ELISA kits, it is necessary to consider both timing of blood sampling and in vivo inhibition of DPP-4. The described approach allows improved estimates of GLP-1 secretion for future studies. It is a limitation that DPP-4 and NEP inhibition may have metabolic effects by stabilizing the intact GLP-1 peptide (e.g. influencing levels of insulin and glucagon).
Purpose Decreased circulating levels of food-intake-regulating gut hormones have been observed in type 2 diabetes and obesity. However, it is still unknown if this is due to decreased secretion from the gut mucosal cells or due to extra-intestinal processing of hormones. Methods We measured intestinal hormone content and assessed morphological differences in the intestinal mucosa by histology and immunohistochemistry. Secretion of hormones and absorption of glucose and bile acids (BA) were assessed in isolated perfused mouse intestine. Results GIP (glucose-dependent insulinotropic polypeptide) and SS (somatostatin) contents were higher in the duodenum of control mice (p < 0.001, and <0.01). Duodenal GLP-1 (glucagon-like peptide-1) content (p < 0.01) and distal ileum PYY content were higher in DIO mice (p < 0.05). Villus height in the jejunum, crypt depth, and villus height in the ileum were increased in DIO mice (p < 0.05 and p = 0.001). In the distal ileum of DIO mice, more immunoreactive GLP-1 and PYY cells were observed (p = 0.01 and 0.007). There was no difference in the absorption of glucose and bile acids. Distal secretion of SS tended to be higher in DIO mice (p < 0.058), whereas no difference was observed for the other hormones in response to glucose or bile acids. Conclusion Our data suggest that differences regarding production and secretion are unlikely to be responsible for the altered circulating gut hormone levels in obesity, since enteroendocrine morphology and hormone secretion capacity were largely unaffected in DIO mice.
Diabetes incidence is rising globally at an accelerating rate causing issues at both the individual and societal levels. However, partly inspired by Ayurvedic medicine, a naturally occurring compound called pterostilbene has been demonstrated to protect against diabetes symptoms, though mainly in rats. The purpose of this study was to investigate the putative protective effect of pterostilbene on the two main aspects of diabetes, namely insulin resistance and decreased insulin secretion, in mice. To accomplish this, we employed diet-induced obese as well as streptozotocin-induced diabetic C57BL/6NTac mice for fasting glucose homeostasis assessment, tolerance tests and pancreas perfusions. In addition, we used the polygenic model of diabetes TALLYHO/JngJ to assess for prevention of β-cell burnout. We found that the diet-induced obese C57BL/6NTac mice were insulin resistant, but that pterostilbene had no impact on this or on overall glucose regulation. We further found that the reported protective effect of pterostilbene against streptozotocin-induced diabetes was absent in C57BL/6NTac mice, despite a promising pilot experiment. Lastly, we observed that pterostilbene does not prevent or delay onset of β-cell burnout in TALLYHO/JngJ mice. In conjunction with the literature, our findings suggest variations in the response to pterostilbene between species or between strains of species.
The molecular sensors underlying nutrient-stimulated GLP-1 secretion are currently being investigated. Peripheral administration of melanocortin-4 receptor (MC4R) agonists have been reported to increase GLP-1 plasma concentrations in mice and humans but it is unknown whether this effect results from a direct effect on the GLP-1 secreting L-cells in the intestine, from other effects in the intestine or from extra-intestinal effects. We investigated L-cell expression of MC4R in mouse and human L-cells by reanalyzing publicly available RNA sequencing databases (mouse and human) and by RT-qPCR (mouse), and assessed whether administration of MC4R agonists to a physiologically relevant gut model, isolated perfused mouse and rat small intestine, would stimulate GLP-1 secretion or potentiate glucose-stimulated secretion. L-cell MC4R expression was low in mouse duodenum and hardly detectable in the ileum and MC4R expression was hardly detectable in human L-cells. In isolated perfused mouse and rat intestine, neither intra-luminal nor intra-arterial administration of NDP-alpha-MSH, a potent MC4R agonist, had any effect on GLP-1 secretion (P ≥0.98, n = 5-6) from the upper or lower-half of the small intestine in mice or in the lower half in rats. Furthermore, HS014-an often used MC4R antagonist, which we found to be a partial agonist-did not affect the glucose-induced GLP-1 response in the rat, P = 0.62, n = 6). Studies on transfected COS7-cells confirmed bioactivity of the used compounds and that concentrations employed were well within in the effective range. Our combined data therefore suggest that MC4R-activated GLP-1 secretion in rodents either exclusively occurs in the colon or involves extra-intestinal signaling.
Because of the beneficial actions of the hormone glucagon-like peptide-1 on glucose metabolism and appetite, food intake and eventually body weight, and because of the observation that the similar metabolic effects of gastric bypass surgery are associated with excessive secretion of GLP-1, attempts are now being made to stimulate the endogenous secretion of this hormone. By targeting the natural cellular origin of GLP-1 it is anticipated that also the physiological pathways of hormone action (which may include neural mechanisms) would be engaged, which might generate fewer side effects. In addition, release of other products of the responsible intestinal endocrine cells, the L-cells, namely the appetite inhibitory hormone, PYY 3-36, and the dual glucagon-GLP-1 co-agonist, oxyntomodulin, would also be promoted. Here, the normal mechanisms for stimulation of L-cell secretion are reviewed, and the potential of identified secretagogues is discussed. Paracrine regulation of L-cell secretion is also discussed and the potential of somatostatin receptor antagonists is emphasized. A therapeutic approach based on stimulation of endogenous secretion of GLP-1/PYY still seems both attractive and potentially feasible.
<p dir="ltr">Dipeptidyl peptidase (DPP)-4 and neprilysin (NEP) rapidly degrade glucagon-like peptide 1 (GLP-1) in mice. Commercially available sandwich ELISA kits may not accurately detect the degradation products, leading to potentially misleading results. We aimed to stabilize GLP-1 in mice allowing reliable measurement with sensitive commercially available ELISA kits. Non-anesthetized male C57Bl/6JRj mice were subjected to an oral glucose tolerance test (OGTT; 2 g/kg glucose), and plasma total and intact GLP-1 were measured (Mercodia and Alpco ELISA kits, respectively). No GLP-1 increases were seen in samples taken beyond 15 minutes after the glucose load. Samples taken at 5 and 10 minutes after the OGTT showed a minor increase in total, but not intact GLP-1. We then administered saline (control), or a DPP-4 inhibitor (valine pyrrolidide or sitagliptin) with or without a NEP-inhibitor (sacubitril) 30 minutes before the OGTT. In the inhibitor groups only, intact GLP-1 increased significantly during the OGTT. After injecting male C57Bl/6JRj mice with a known dose of GLP-1(7-36)NH<sub>2</sub>, peak GLP-1 levels were barely detectable after saline, but 5-10-fold higher during sitagliptin and the combination of sitagliptin/sacubitril. The half-life of the GLP-1 plasma disappearance increased up to 7-fold during inhibitor treatment. We conclude that reliable measurement of GLP-1 secretion is not possible in mice in vivo with commercially available sandwich ELISA kits, unless degradation is prevented by inhibition of DPP-4 and perhaps neprilysin. The described approach allows improved estimates of GLP-1 secretion for future studies, although it is a limitation that these inhibitors additionally influence levels of insulin and glucagon.</p>