Abstract Sweet potato proteins have been shown to possess antioxidant and antidiabetic properties in vivo. The ability of a protein to exhibit systemic effects is somewhat unusual as proteins are typically susceptible to digestive enzymes. This study was undertaken to better understand how digestive enzymes affect sweet potato proteins. Two fractions of industrially processed sweet potato peel, containing 6.8% and 8.5% protein and 80.5% and 83.3% carbohydrate, were used as a source of protein. Sweet potato proteins were incubated with pepsin, trypsin, and chymotrypsin and protein breakdown was visualized with SDS ‐ PAGE . After pepsin digestion, samples were assayed for amylase inhibitory activity. Sporamin, the major storage protein in sweet potatoes, which functions as a trypsin inhibitor as well, exhibited resistance to pepsin, trypsin, and chymotrypsin. Sporamin from blanched peel of orange sweet potatoes was less resistant to pepsin digestion than sporamin from outer peel and from extract of the white‐skinned Caiapo sweet potato. Trypsin inhibitory activity remained after simulated gastric digestion, with the Caiapo potato protein and peel samples exhibiting higher inhibitory activity compared to the blanched peel sample. Amylase and chymotrypsin inhibitory activity was not present in any of the samples after digestion.
Abstract: Proteins isolated from sweet potatoes ( Ipomoea batatas ) have been shown to possess antidiabetic, antioxidant, and antiproliferative properties. The objective of this study was to chemically optimize a process for extracting proteins from sweet potato peel. The extraction procedure involved mixing peel with saline solvent to dissolve proteins and then precipitating with CaCl 2 . Quadratic and segmented models were used to determine the optimum NaCl concentration and peel to solvent ratio to maximize protein solubility while minimizing solvent usage. A segmented model was also used to optimize the concentration of CaCl 2 used for precipitation. The highest yield was obtained by mixing blanched peelings with 59.7 mL of 0.025 mM NaCl per g peel and then precipitating with 6.8 mM CaCl 2 . The results of this study show that potentially valuable proteins can be extracted from peel generated during processing of sweet potatoes and industrial costs can be minimized by using these optimum conditions. Practical Application: Potentially valuable proteins can be extracted from sweet potato peel, a waste product of sweet potato processing.