Abstract. This work reports on the current status of the global modeling of iron (Fe) deposition fluxes and atmospheric concentrations and the analyses of the differences between models, as well as between models and observations. A total of four global 3-D chemistry transport (CTMs) and general circulation (GCMs) models participated in this intercomparison, in the framework of the United Nations Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection (GESAMP) Working Group 38, “The Atmospheric Input of Chemicals to the Ocean”. The global total Fe (TFe) emission strength in the models is equal to ∼72 Tg Fe yr−1 (38–134 Tg Fe yr−1) from mineral dust sources and around 2.1 Tg Fe yr−1 (1.8–2.7 Tg Fe yr−1) from combustion processes (the sum of anthropogenic combustion/biomass burning and wildfires). The mean global labile Fe (LFe) source strength in the models, considering both the primary emissions and the atmospheric processing, is calculated to be 0.7 (±0.3) Tg Fe yr−1, accounting for both mineral dust and combustion aerosols. The mean global deposition fluxes into the global ocean are estimated to be in the range of 10–30 and 0.2–0.4 Tg Fe yr−1 for TFe and LFe, respectively, which roughly corresponds to a respective 15 and 0.3 Tg Fe yr−1 for the multi-model ensemble model mean. The model intercomparison analysis indicates that the representation of the atmospheric Fe cycle varies among models, in terms of both the magnitude of natural and combustion Fe emissions as well as the complexity of atmospheric processing parameterizations of Fe-containing aerosols. The model comparison with aerosol Fe observations over oceanic regions indicates that most models overestimate surface level TFe mass concentrations near dust source regions and tend to underestimate the low concentrations observed in remote ocean regions. All models are able to simulate the tendency of higher Fe concentrations near and downwind from the dust source regions, with the mean normalized bias for the Northern Hemisphere (∼14), larger than that of the Southern Hemisphere (∼2.4) for the ensemble model mean. This model intercomparison and model–observation comparison study reveals two critical issues in LFe simulations that require further exploration: (1) the Fe-containing aerosol size distribution and (2) the relative contribution of dust and combustion sources of Fe to labile Fe in atmospheric aerosols over the remote oceanic regions.
<p>Anthropogenic emissions of nitrogen and sulphur oxides and ammonia have altered the pH of aerosol, cloud water and precipitation, with significant decreases over much of the marine atmosphere. Some of these emissions have led to an increased atmospheric burden of reactive nitrogen and its deposition to ocean ecosystems. Changes in acidity in the atmosphere also have indirect effects on the supply of labile nutrients to the ocean. For nitrogen, these changes are caused by shifts in the chemical speciation of both oxidized (NO<sub>3</sub><sup>-</sup> and HNO<sub>3</sub>) and reduced (NH<sub>3</sub> and NH<sub>4</sub><sup>+</sup>) forms that result in altered partitioning between the gas and particulate phases that affect transport. Other important nutrients, notably iron and phosphorus, are impacted because their soluble fractions increase due to exposure to low pH environments during atmospheric transport. These changes affect not only the magnitude and distribution of individual nutrient supply to the ocean but also the ratios of nitrogen, phosphorus, iron and other trace metals in atmospheric deposition. &#160;Since marine microbial populations are sensitive to nutrient supply ratio, the consequences of atmospheric acidity change include shifts in ecosystem composition in addition to overall changes in marine productivity. Nitrogen and sulphur oxide emissions are decreasing in many regions, but ammonia emissions are much harder to control. The acidity of the atmosphere is therefore expected to decrease in the future, with further implications for nutrient supply to the ocean.</p><p>This presentation will explore the impact of increased atmospheric acidity since the Industrial Revolution, and the projected acidity decreases, on atmospheric nutrient supply and its consequences for the biogeochemistry of the ocean.</p>
Dissolved cobalt (dCo), iron (dFe) and aluminum (dAl) were determined in water column samples along a meridional transect (∼31°N to 24°N) south of Bermuda in June 2008. A general north‐to‐south increase in surface concentrations of dFe (0.3–1.6 nM) and dAl (14–42 nM) was observed, suggesting that aerosol deposition is a significant source of dFe and dAl, whereas no clear trend was observed for near‐surface dCo concentrations. Shipboard aerosol samples indicate fractional solubility values of 8–100% for aerosol Co, which are significantly higher than corresponding estimates of the solubility of aerosol Fe (0.44–45%). Hydrographic observations and analysis of time series rain samples from Bermuda indicate that wet deposition accounts for most (>80%) of the total aeolian flux of Co, and hence a significant proportion of the atmospheric input of dCo to our study region. Our aerosol data imply that the atmospheric input of dCo to the Sargasso Sea is modest, although this flux may be more significant in late summer. The water column dCo profiles reveal a vertical distribution that predominantly reflects ‘nutrient‐type’ behavior, versus scavenged‐type behavior for dAl, and a hybrid of nutrient‐ and scavenged‐type behavior for dFe. Mesoscale eddies also appear to impact on the vertical distribution of dCo. The effects of biological removal of dCo from the upper water column were apparent as pronounced sub‐surface minima (21 ± 4 pM dCo), coincident with maxima in Prochlorococcus abundance. These observations imply that Prochlorococcus plays a major role in removing dCo from the euphotic zone, and that the availability of dCo may regulate Prochlorococcus growth in the Sargasso Sea.
A sensitive flow‐injection method with chemiluminescence detection (FI‐CL) for the determination of dissolved cobalt in open ocean samples, suitable for shipboard use has been developed. To date, FI methods for dissolved cobalt have been used only in coastal and estuarine waters. Therefore, significant modifications to existing methods were required, including (1) the use of a commercially available iminodiacetate (IDA) resin (Toyopearl AF‐chelate 650M) in place of resin immobilized 8‐hydroxyquinoline for online preconcentration and matrix removal, (2) the introduction of acidified ammonium acetate (pH 4) as a column‐conditioning step before sample loading and rinse steps, and most importantly, (3) UV irradiation of acidified seawater samples to determine total dissolved cobalt, rather than an operationally defined fraction. This method had a detection limit of 4.5 pM (3σ of the blank). The accuracy of the method was evaluated by determining total dissolved cobalt in acidified North Pacific deep seawater (1000 m) samples from the Sampling and Analysis of Iron (SAFe) program and NASS‐5. The method yields a mean (± SD) value of 40.9 ± 2.6 pM ( n = 9), which is in excellent agreement with the SAFe consensus value of 43 ± 4 pM, and 208 ± 30 pM for NASS‐5 (certified value 187 ± 51 pM). This study demonstrates that UV irradiation is an essential step for the determination of total dissolved cobalt in seawater by FI‐CL. The method was applied to vertical profiles from the Sargasso Sea, indicating that total dissolved cobalt is influenced by both biological and physical processes.