Influenza remains a severe respiratory illness that poses significant global health threats. Recent studies have identified distinct microbial communities within the respiratory tract, from nostrils to alveoli. This research explores specific anti-influenza respiratory microbes using a mouse model supported by 16S rDNA sequencing and untargeted metabolomics. The study found that transferring respiratory microbes from mice that survived H9N2 influenza to antibiotic-treated mice enhanced infection resistance. Notably, the levels of Aeromicrobium were significantly higher in the surviving mice. Mice pre-treated with antibiotics and then inoculated with Aeromicrobium camelliae showed reduced infection severity, as evidenced by decreased weight loss, higher survival rates, and lower lung viral titres. Metabolomic analysis revealed elevated LysoPE (16:0) levels in mildly infected mice. In vivo and in vitro experiments indicated that LysoPE (16:0) suppresses inducible nitric oxide synthase (INOS) and cyclooxygenase-2 (COX2) expression, enhancing anti-influenza defences. Our findings suggest that Aeromicrobium camelliae could serve as a potential agent for influenza prevention and a prognostic marker for influenza outcomes.
Probiotics are beneficial for intestinal diseases. Research shows that probiotics can regulate intestinal microbiota and alleviate inflammation. Little research has been done on the effects of probiotics on colitis in mice. The purpose of this study was to investigate the inhibitory effect of the strains isolated and screened from the feces of healthy piglets on the enteritis of rocitrobacter. The compound ratio of isolated Lactobacillus L9 and Enterococcus faecalis L16 was determined, and the optimal compound ratio was selected according to acid production tests and bacteriostatic tests in vitro. The results showed that when the ratio of Lactobacillus L9 to Enterococcus faecalis L16 was 4:1, the pH value was the lowest, and the antibacterial diameter was the largest. Then, in animal experiments, flow cytometry was used to detect the number of T lymphocytes in the spleen and mesenteric lymph nodes of mice immunized with complex lactic acid bacteria. The results showed that the number of T lymphocytes in the spleen and mesenteric lymph nodes of mice immunized with complex lactic acid bacteria significantly increased, which could improve the cellular immunity of mice. The microbiota in mouse feces were sequenced and analyzed, and the results showed that compound lactic acid bacteria could increase the diversity of mouse microbiota. It stabilized the intestinal microbiota structure of mice and resisted the damage of pathogenic bacteria. The combination of lactic acid bacteria was determined to inhibit the intestinal colitis induced by Citrobacter, improve the cellular immune response of the body, and promote the growth of animals.
Two unusual ring C-seco and ring D-aromatic nor-triterpenoids, ebracpenes A (1) and B (2), were obtained from Euphorbia ebracteolata roots and elucidated by widely spectroscopic data analyses, such as 1D, 2D NMR, HRESIMS, and X-ray crystallography analysis. Compound 2 showed a significant inhibitory activity on lipase (IC50 = 0.89 μM as well as the Ki determined to be 0.69 μM). Enzyme kinetics analysis and molecular docking experiments revealed that compound 2 was a competitive inhibitor, binding to the active site of lipase.
A far-red fluorescent probe has been developed for sensing fungal laccase. The probe was used to determine that Rhizopus oryzae had a high level endogenous laccase amongst 24 fungal strains. The Rhizopus oryzae was then used as a biocatalyst for the preparation of dicoumarin resulting in significant inhibition of Mycobacterium tuberculosis H37Ra.
Horseradish peroxidase (HRP) and laccase are well known oxidases, which have been widely applied for the biosynthesis of organic compounds. In the present work, flavone analogues as an important type of bioactive natural product could be oxidized by HRP or laccase, which afforded dimeric and oxidative flavones. All of the flavone analogues usually possessing phenolic groups could be transformed using HRP. However, only flavonols, isoflavones and chalcones with phenolic groups and dihydroxylflavones were effective substrates of laccase. The radical reaction mechanism with the B-ring of flavone analogues as the radical reaction trigger was proposed for the oxidation of flavones. In silico molecular docking analyses for assaying the interaction between flavone analogues and oxidases indicated that the phenolic groups at the B rings of flavones docked into the HEME active pocket of HRP well. Kinetic behaviors of the oxidation for various flavone analogues mediated by HRP or laccase displayed Hill and substrate inhibition kinetic models. Therefore, in the present work, the oxidation of various flavone analogues mediated by HRP or laccase has been successfully characterized, which would be helpful for the preparation of flavone derivatives.
An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.
An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.
We report on a naphthalimide ratiometric fluorescent probe for the real-time sensing and imaging of pathogenic bacterial glucosyltransferases, which are associated with the development of dental caries. Using a high-throughput screening method, we identified that several natural polyphenols from green tea were GTFs inhibitors that could eventually lead to suitable oral treatments to prevent the development of dental caries.