Hydrophobic porous polymers can protect the active metal-hydride intermediate, bring highly efficient catalyst for CO 2 hydrogenation to formic acid in water. An higher conversion can be achieved using p-PNP-Ir in aqueous solution.
A novel H 2 S resource methodology mediated by protic ILs under solvent-free conditions with almost quantitative conversion and fast reaction kinetics.
Through technological analysis of the built-in clip of the plastic part and the shape around it,a built-in slide in the cavity was designed and used in combination with another slide to finish the demoulding of the built-in clip of the plastic part.
Selective separation of CO2 from flue gas conforms to the criterion of sustainable society. Herein, a series of imidazolium-based phenolate ionic liquids (ILs) that have dual-site interaction centers to isolate CO2 from N2 by supported ionic liquid membranes (SILMs) is designed and prepared. Density, viscosity, and CO2 solubility in these ILs were measured. The effects of the electron-withdrawing or electron-donating ability of the substituents on the anion, the operation temperature and partial pressure on the permeability of CO2, and the ideal selectivity of CO2/N2 were investigated systematically. High permeability (up to 2540 barrers) and selectivity of CO2/N2 (up to 127) are achieved in 1-butyl-3-methylimidazolium phenolate ([bmim][PhO]) containing 15 wt % H2O under humidified condition. A novel facilitated transport mechanism, transfer of CO2 from carbene to phenolated anion, is proposed based on NMR, FT-IR, and theoretical calculation results. The new pathway is believed to offer an alternative opportunity for designing novel CO2 separation materials.
In this work, a series of novel proton-gradient-transfer acid complexes (PGTACs) were developed. Their physicochemical properties, including thermal stability, melting point, and Hammett acidity, were measured. The effects of catalyst loading, reaction temperature, and substrate expansion on the catalytic performance were systematically studied. It is found that the combination of bidentate N-heterocycle and H2SO4 (1 : 2 M ratio) could form simultaneously N–H covalent bond and N⋯H hydrogen bond, which makes the PGTACs excellent catalysts integrate the advantages of strong acids (high catalytic activity) and ionic liquids (phase separation) in the esterification reaction. Moreover, these PGTACs can be reused by convenient phase separation without obvious diminution of catalytic activity. It is concluded that these PGTACs are potential alternative candidates for esterification reaction in the process of industrial catalysis.