Fragile X syndrome, a common form of inherited mental retardation, is caused by the loss of fragile X mental retardation protein (FMRP), an mRNA binding protein that is hypothesized to regulate local mRNA translation in dendrites downstream of gp1 metabotropic glutamate receptors (mGluRs). However, specific FMRP-associated mRNAs that localize to dendrites in vivo and show altered mGluR-dependent translation at synapses of Fmr1 knock-out mice are unknown so far. Using fluorescence in situ hybridization, we discovered that GluR1/2 and postsynaptic density-95 (PSD-95) mRNAs are localized to dendrites of cortical and hippocampal neurons in vivo . Quantitative analyses of their dendritic mRNA levels in cultured neurons and synaptoneurosomes did not detect differences between wild-type and Fmr1 knock-out (KO) mice. In contrast, PSD-95, GluR1/2, and calcium/calmodulin-dependent kinase IIα (CaMKIIα) mRNA levels in actively translating polyribosomes were dysregulated in synaptoneurosomes from Fmr1 knock-out mice in response to mGluR activation. [ 35 S]methionine incorporation into newly synthesized proteins similarly revealed impaired stimulus-induced protein synthesis of CaMKIIα and PSD-95 in synaptoneurosomes from Fmr1 KO mice. Quantitative analysis of mRNA levels in FMRP-specific immunoprecipitations from synaptoneurosomes demonstrated the association of FMRP with CaMKIIα, PSD-95, and GluR1/2 mRNAs. These findings suggest a novel mechanism whereby FMRP regulates the local synthesis AMPA receptor (AMPAR) subunits, PSD-95, and CaMKIIα downstream of mGluR-activation. Dysregulation of local translation of AMPAR and associated factors at synapses may impair control of the molecular composition of the postsynaptic density and consequently alter synaptic transmission, causing impairments of neuronal plasticity observed in Fmr1 knock-out mice and fragile X syndrome.
RNA binding proteins may be important mediators of the activity-dependent transport of mRNAs to dendritic spines of activated synapses. We used fluorescence microscopy and digital imaging techniques applied to both fixed and live cultured hippocampal neurons to visualize the localization of the mRNA binding protein, zipcode binding protein 1 (ZBP1), and its dynamic movements in response to KCl-induced depolarization at high spatial and temporal resolution. With the use of immunofluorescence, image deconvolution, and three-dimensional reconstruction, ZBP1 was localized in the form of granules that were distributed in dendrites, spines, and subsynaptic sites. KCl depolarization increased the dendritic localization of ZBP1 that was not attributed to an increase in ZBP1 expression. Live cell imaging of single cells before and after perfusion of KCl revealed the rapid and directed efflux of ZBP1 granules from the cell body into dendrites in a proximo-distal gradient. High-speed imaging of enhanced green fluorescence protein-ZBP1 granules revealed rapid anterograde and retrograde movements in dendrites as well as dynamic movements in dendritic spines. A population of ZBP1 granules colocalized with beta-actin mRNA, and their spatial association in dendrites was increased by KCl depolarization. The NMDA receptor antagonist AP-5 impaired the dendritic localization of ZBP1 and beta-actin mRNA and inhibited the KCl-induced transport of ZBP1. The activity-dependent trafficking of ZBP1 and its dynamic movements within dendritic spines provide new evidence to implicate RNA binding proteins as regulators of mRNA transport to activated synapses in response to synaptic activity.
RNA binding proteins may be important mediators of the activity-dependent transport of mRNAs to dendritic spines of activated synapses. We used fluorescence microscopy and digital imaging techniques applied to both fixed and live cultured hippocampal neurons to visualize the localization of the mRNA binding protein, zipcode binding protein 1 (ZBP1), and its dynamic movements in response to KCl-induced depolarization at high spatial and temporal resolution. With the use of immunofluorescence, image deconvolution, and three-dimensional reconstruction, ZBP1 was localized in the form of granules that were distributed in dendrites, spines, and subsynaptic sites. KCl depolarization increased the dendritic localization of ZBP1 that was not attributed to an increase in ZBP1 expression. Live cell imaging of single cells before and after perfusion of KCl revealed the rapid and directed efflux of ZBP1 granules from the cell body into dendrites in a proximo-distal gradient. High-speed imaging of enhanced green fluorescence protein-ZBP1 granules revealed rapid anterograde and retrograde movements in dendrites as well as dynamic movements in dendritic spines. A population of ZBP1 granules colocalized with β-actin mRNA, and their spatial association in dendrites was increased by KCl depolarization. The NMDA receptor antagonist AP-5 impaired the dendritic localization of ZBP1 and β-actin mRNA and inhibited the KCl-induced transport of ZBP1. The activity-dependent trafficking of ZBP1 and its dynamic movements within dendritic spines provide new evidence to implicate RNA binding proteins as regulators of mRNA transport to activated synapses in response to synaptic activity.
Abstract An interferon (IFN)‐γ immunoreactive molecule, localized to small neurons in peripheral sensory ganglia (N‐IFN‐γ), has been detected with two mouse monoclonal antibodies (DB1 and DB16) directed against different epitopes of rat IFN‐γ. To define N‐IFN‐γ with regard to its protein characteristics and bioactivities, DB1 and DB16 were used to purify N‐IFN‐γ from rat trigeminal ganglia in a two‐step sequential antibody‐affinity procedure. Sodium dodecylsulfate polyacrylamide gel electrophoresis (PAGE) and silver staining of purified N‐IFN‐γ displayed three bands with an approximate molecular mass of 66, 62 and 54 kDa. The N‐IFN‐γ bioactivity was confined to the protein stained on gel when native material was run on PAGE. Biological effects of pure N‐IFN‐γ were examined and compared with those of lymphocyte‐derived recombinant IFN‐γ. N‐IFN‐γ had antiviral effects in vitro and induced major histocompatibility complex class I and II antigens on macrophages and in cells in skeletal muscle cell cultures. N‐IFN‐γ also stimulated myoblast proliferation and affected cholinergic receptor distribution on myotubes similar to recombinant IFN‐γ. Both molecules potently stimulated Trypanosoma brucei brucei growth. These data suggest that, although N‐IFN‐γ is a protein distinct from lymphocyte‐derived IFN‐γ, the two molecules have enough structural similarities to allow for antibody recognition of at least two epitopes, and action on similar target structures on both parasite and mammalian cells.