The effects of wheat different planting density and field arrangement on intercropping population quality and yield were investigated.Results show that the density of wheat too much,transmitting rate was lower in intercropping population,and intercropping population quality was weak,although,yield of wheat was higer as spikes many,but yield of maize was lower,to lead to total yields was lower.As density of wheat less,yield of wheat can get high-yielding because the big and many panicles,grain weight,moreover,it is conducive to maize,to lead to total yields was higher.Treatment in same seed amount and different seeding rows,four rows planting modes had higher yield and had better intercropping population quality.Treatment in different seed amount and seeding rows,three rows planting modes and density was 9×105/hm2 had better.The results of correlation analysis showed that maize yield is the key point to total yields in the wheat/maize intercropping.
We conducted a two-factor split-plot experiment to examine the alteration of soil inorganic phosphorus forms and phosphorus availability under straw mulching and phosphorus fertilizer rates. The main factor was straw mulching and non-mulching, while the sub-factor was phosphorus supply rates, including 0, 75, and 120 kg·hm-2. We analyzed the characteristics of phosphorus adsorption-desorption, the content of inorganic phosphorus components and their relationship with available phosphorus in hilly upland purple soil in Sichuan. Results showed that compared with the non-mulching, the maximum phosphorus adsorption capacity of straw mulching was notably decreased by 7.7% and 7.4% in the two experimental years from 2018 to 2020. The degree of phosphorus saturation and readily desorbable phosphorus of straw mulching were remarkably increased by 35.4% and 21.6% in 2019 and 18.6% and 35.2% in 2020, respectively. The maximum buffer capacity of phosphorus was not different between straw mulching and non-mulching. The maximum phosphorus adsorption capacity and maximum buffer capacity of phosphorus were significantly lower, and the degree of phosphorus saturation was notably higher in the phosphorus application treatment than that under no phosphorus treatment. The readily desorbable phosphorus increased with the increases of phosphorus rates. The contents of dicalcium phosphate (Ca2-P), octa-calcium phosphate (Ca8-P) and iron phosphorus (Fe-P) in straw mulching treatment were notably higher than those in non-mulching treatment, whereas the content of aluminum phosphorus (Al-P) significantly lower under the straw mulching. Meanwhile, the contents of occluded phosphate (O-P) and apatite (Ca10-P) tended to decrease in the straw mulching compared with that under the non-mulching. Phosphorus application increased the content of different inorganic phosphorus components. Compared with the non-mulching, soil available phosphorus content and the phosphorus activation coefficient of straw mulching remarkably increased by 23.2% and 21.3% in 2019, and 9.6% and 8.9% in 2020, respectively. Soil available phosphorus content and phosphorus activation coefficient increased with the increases of phosphorus rate. Results of regression analysis showed that the contribution of inorganic phosphorus components to the availability of available phosphorus in purple soil was Ca2-P > Fe-P > Al-P > Ca8-P > Ca10-P > O-P. Therefore, straw mulching combined with a reasonable phosphorus fertilizer rate could promote the decomposition and transformation of insoluble soil phosphorus to moderately active or easily absorbed phosphorus forms, reduce soil phosphorus adsorption, stimulate soil phosphorus desorption, and improve soil phosphorus availability. Based on the economic benefits, phosphate fertilizer application at the rate of 75 kg·hm-2 combined with straw mulching was recommended in Sichuan hilly dryland, which would be more beneficial in improving soil phosphorus availability.为揭示秸秆覆盖配施磷肥下土壤无机磷形态变化规律及磷的有效性,本研究采用二因素裂区设计,主区为秸秆覆盖和不覆盖,副区为3个施磷量(0、75和120 kg·hm-2),分析秸秆覆盖与施磷条件下四川丘陵旱地紫色土磷吸附-解吸特征、无机磷组分含量及其与有效磷的关系。结果表明: 2018—2020年两个试验年度秸秆覆盖处理比不覆盖处理土壤磷最大吸附量分别显著降低7.7%和7.4%,磷吸附饱和度分别显著增加35.4%和18.6%,土壤易解吸磷分别显著提高21.6%和35.2%,磷最大缓冲容量无显著差异;施磷与不施磷相比,磷最大吸附量和最大缓冲容量显著降低,吸附饱和度显著增加,易解吸磷则随施磷量的增加而增加。两个试验年度秸秆覆盖处理比不覆盖处理磷酸二钙(Ca2-P)、磷酸八钙(Ca8-P)和铁磷(Fe-P)含量显著增加,铝磷(Al-P)含量显著降低,闭蓄态磷(O-P)和磷灰石(Ca10-P)含量有降低的趋势;与不施磷相比,施磷则提高了不同无机磷组分含量。与不覆盖处理相比,两个试验年度秸秆覆盖处理土壤有效磷含量分别显著增加23.2%和9.6%,磷活化系数分别显著提高21.3%和8.9%,且土壤有效磷含量和磷活化系数均随施磷量的增加而提高。回归分析表明,无机磷各组分对紫色土有效磷有效性的贡献为Ca2-P>Fe-P>Al-P>Ca8-P>Ca10-P>O-P。因此,秸秆覆盖配施磷肥促进了土壤难溶性磷向中等活性或易于作物吸收的磷形态分解和转化,降低土壤对磷素的吸附,促进土壤磷素的解吸,最终提高土壤磷素有效性。综合考虑经济效益,推荐四川丘陵旱地秸秆覆盖配施75 kg·hm-2磷肥更有利于提高土壤磷素有效性。.
Abstract Investigations of critical physiological traits associated with the genetic yield gain in wheat ( Triticum aestivum ) are essential to determine future crop breeding and management strategies. This study grew 32 cultivars released from 1965 to 2017 for two cropping seasons (a dry year, 2016–2017, and a humid year, 2017–2018) to examine yield potential achieved through efficiencies in canopy light interception, solar energy conversion, harvest index (HI), and nitrogen (N) uptake and utilization. Yield gain for wheat (25.0 ± 1.8 kg ha −1 yr −1 ) resulted from increases in plant biomass, HI, and N utilization efficiency (NUtE). Modern cultivars with an erect canopy and slender flag‐leaves optimized light interception and could achieve higher biomass yield. The introduction of semi‐dwarf genes ( Rht‐8 ) reduced plant height (0.05 yr −1 ) and improved HI (0.004 yr −1 ) and NUtE resulting from both increased pre‐anthesis accumulated biomass and plant dry matter mobilization after anthesis. Greater biomass partitioning to spikes resulted in higher fruiting efficiency and grain number. Due to greater tillering capability through increased N uptake efficiency, increased fertile spikes and grain yield were observed. Among these newer cultivars, the rate of yield gain was slow, and yield stability was more affected by accumulative rainfall than diurnal temperature. The future challenge of wheat breeding is to maintain the genetic yield gain without increasing the reliance on chemical fertilizers under an increasingly variable climate.
Soybean seeds contain higher concentrations of oil (triacylglycerol) and fatty acids than do cereal crop seeds, and the oxidation of these biomolecules during seed storage significantly shortens seed longevity and decreases germination ability. Here, we report that diethyl aminoethyl hexanoate (DA-6), a plant growth regulator, increases germination and seedling establishment from aged soybean seeds by increasing fatty acid metabolism and glycometabolism. Phenotypic analysis showed that DA-6 treatment markedly promoted germination and seedling establishment from naturally and artificially aged soybean seeds. Further analysis revealed that DA-6 increased the concentrations of soluble sugars during imbibition of aged soybean seeds. Consistently, the concentrations of several different fatty acids in DA-6-treated aged seeds were higher than those in untreated aged seeds. Subsequently, quantitative PCR analysis indicated that DA-6 induced the transcription of several key genes involved in the hydrolysis of triacylglycerol to sugars in aged soybean seeds. Furthermore, the activity of invertase in aged seeds, which catalyzes the hydrolysis of sucrose to form fructose and glucose, increased following DA-6 treatment. Taken together, DA-6 promotes germination and seedling establishment from aged soybean seeds by enhancing the hydrolysis of triacylglycerol and the conversion of fatty acids to sugars.
Diazotrophs that carry out the biological fixation of atmospheric dinitrogen (N 2 ) replenish biologically available nitrogen (N) in soil and are influenced by the input of inorganic and organic substrates. To date, little is known about the effects of combined organic substrate addition and N fertilization on the diazotroph community composition and structure in purple soils. We investigated the effects of N fertilization and straw mulching on diazotroph communities by quantifying and sequencing the nifH gene in wheat rhizosphere. The abundance and richness of diazotrophs were greater the higher the fertilization level in the mulched treatments, whereas in the nonmulched treatments (NSMs), richness was lowest with the highest N fertilization level. The abundance and α-diversity of diazotrophs correlated with most of the soil properties but not with pH. At the genus level, the relative abundances of Azospirillum , Bacillus , and Geobacter were higher in the NSMs and those of Pseudacidovorax , Skermanella , Azospira , Paraburkholderia , Azotobacter , Desulfovibrio , Klebsiella , and Pelomonas in the mulched treatments. The differences in community composition between the mulched and the NSMs were associated with differences in soil temperature and soil organic carbon and available potassium contents and C:N ratio. Overall, straw mulching and N fertilization were associated with changes in diazotroph community composition and higher abundance of nifH gene in alkaline purple soils.
Over the past several decades, a decreasing trend in solar radiation has been observed during the wheat growing season. The effects of shade stress on grain yield formation have been extensively studied. However, little information on shade stress’s effects on protein formation warrants further investigation. Two wheat cultivars were grown under three treatments, no shade as the control group (CK), shading from the joint to the anthesis stage (S1), and shading from the joint to the mature stage (S2), to investigate the effects of shade stress on the free amino acids of the caryopsis and endosperm and protein accumulation during grain filling. The dry mass of caryopsis and endosperm was significantly decreased under shade stress, whereas Glu, Ser, Ala, and Asp and protein relative content increased during grain filling. The observed increases in total protein in S1 and S2 were attributed to the increases in the SDS-isoluble and SDS-soluble protein extracts, respectively. S1 improved polymer protein formation, but S2 delayed the conversion of albumins and globulins into monomeric and polymeric proteins. Moreover, shade stress increased the proportion of SDS-unextractable polymeric protein, which represented an increase in the degree of protein polymerization. The polymerization of protein interrelations between protein components and accumulation in caryopsis and endosperm provided novel insights into wheat quality formation under shade stress.