Scutellaria baicalensis Georgi and Raphanus Sativus Linne herbal mixture (SRE) is a Chinese herbal medicine. In this study, we aimed to evaluate the therapeutic efficacy of SRE as an active ingredient for 2,4-dinitrochlorobenzene (DNCB)-induced atopic dermatitis (AD) and to predict the underlying therapeutic mechanisms and involved pathways using network pharmacological analysis. Treatment with SRE accelerated the development of AD-like lesions, improving thickness and edema of the epidermis. Moreover, administering the SRE to AD-like mice suppressed immunoglobulin E and interleukin-4 cytokine and reduced T lymphocyte differentiation. In silico, network analysis was used to predict the exact genes, proteins, and pathways responsible for the therapeutic effect of the SRE against DNCB-induced AD. These results indicated that the SRE exerted protective effects on the DNCB-induced AD-like model by attenuating histopathological changes and suppressing the levels of inflammatory mediators. Therefore, the SRE can potentially be a new remedy for improving AD and other inflammatory diseases and predicting the intracellular signaling pathways and target genes involved. This therapeutic effect of the SRE on AD can be used to treat DNCB-induced AD and its associated symptoms.
Salidroside [2-(4-hydroxyphenyl)ethyl β-D-glucopyranoside (SAS)] has been identified as the most potent ingredient of the plant Rhodiola rosea L. Previous studies have demonstrated that it possesses a number of pharmacological properties, including anti-aging, anti-fatigue, antioxidant, anticancer and anti-inflammatory properties. In this study, to ascertain the molecular mechanisms responsible for the anti-inflammatory activity of SAS, we used phorbol-12-myristate-13-acetate (PMA) plus A23187 to induce inflammation in human mast cell line-1 (HMC-1). The HMC-1 cells were treated with SAS prior to being stimulated with PMA plus A23187. Pro-inflammatory cytokine production was measured by enzyme-linked immunosorbent assay (ELISA) and reverse transcription-polymerase chain reaction (RT-PCR). Western blot analysis was used to examine the activation of mitogen-activated protein kinases (MAPKs) and nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB). SAS inhibited the mRNA expression and production of interleukin (IL)-6, IL-8 and tumor necrosis factor (TNF). In cells stimulated with PMA plus A23187, SAS suppressed the phosphorylation of extracellular signal-regulated kinase (ERK)1/2 and c-jun N-terminal kinase 1/2 (JNK1/2), but not that of p38 MAPK. SAS suppressed the expression of NF-κB in the nucleus. On the whole, our results suggest that SAS exerts an anti-inflammatory effect by inhibiting the production of pro-inflammatory cytokines through the blocking of the NF-κB and MAPK signaling pathways.
Black ginseng (Panax ginseng C. A. Meyer), three to nine times-steamed and dried ginseng, has biological and pharmacological activities. In this study, the anti-diabetic effects of the black ginseng ethanol extract (GBG05-FF) in typical type 2 diabetic model db/db mice were investigated. The effect of GBG05-FF in Type 2 diabetic mice was investigated by their blood analysis, biological mechanism analysis, and histological analysis. The mice group treated with GBG05-FF showed decreased fasting blood glucose and glucose tolerance compared to that of the nontreated GBG05-FF group. In the blood analysis, GBG05-FF decreased main plasma parameter such as HbA1c, triglyceride, and total-cholesterol levels related to diabetes and improved the expression of genes and protein related to glucose homeostasis and glucose uptake in the liver and muscle. The histological analysis result shows that GBG05-FF decreased lipid accumulation in the liver and damage in the muscle. Moreover, GBG05-FF increased the phosphorylation of the AMPK in the liver and upregulated the expression of GLUT2 in liver and GLUT4 in muscle. Therefore, the mechanisms of GBG05-FF may be related to suppressing gluconeogenesis by activating AMPK in the liver and affecting glucose uptake in surrounding tissues via the upregulation of GLUT2 and GLUT4 expression. These findings provided a new insight into the anti-diabetic clinical applications of GBG05-FF and it might play an important role in the development of promising functional foods and drugs from the viewpoint of the chemical composition and biological activities.
Staphylococcus aureus produces a number of virulence factors. The major virulence factors exhibited by S aureus include various antigens, enzymes, cytotoxins and exotoxins (e.g. hemolysins, enterotoxins and toxic shock syndrome toxin). In this report, we show the influence of punicalagin on the secretion of exoprotein from S aureus by western blotting, tumor necrosis factor (TNF) release assay and quantitative RT-PCR. When added to S aureus cultures at an OD600 of 0.9, graded subinhibitory concentrations of punicalagin reduced the production of α-toxin, SEA and SEB in methicillin-resistant Staphylococcus aureus in a dose-dependent manner. Consistently, punicalagin reduced TNF-inducing activity by S aureus culture supernatants. Here, the transcriptional level of agr (accessory gene regulator) in S aureus was inhibited by punicalagin, suggesting that the reduced transcription may affect the secretion of exotoxins. These findings suggest that the expression of α-toxin and enterotoxins in S aureus is sensitive to the action of punicalagin, which may be an advantageous candidate in the treatment of toxigenic staphylococcal disease.
Asthma is a pulmonary disease induced by the inhalation of aeroallergens and subsequent inappropriate immune responses. Camellia sinensis (L.) Kuntze has been evaluated as an effective antioxidant supplement produced from bioactive compounds, including flavonoids. In this study, we aimed to determine the effects of Camellia sinensis (L.) Kuntze extract (CE) on ovalbumin-induced allergic asthma. The components of CE were analyzed using high-performance liquid chromatography (HPLC) chromatogram patterns, and asthmatic animal models were induced via ovalbumin treatment. The antioxidant and anti-inflammatory effects of CE were evaluated using 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH), 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS), and nitric oxide (NO) assays. Seven compounds were detected in the CE chromatogram. In the ovalbumin-induced mouse model, CE treatment significantly decreased the inflammation index in the lung tissue. CE also significantly decreased eosinophilia and the production of inflammatory cytokines and OVA-specific IgE in animals with asthma. Collectively, our results indicate that CE has anti-inflammatory and antioxidant activities, and that CE treatment suppresses asthmatic progression, including mucin accumulation, inflammation, and OVA-specific IgE production.
Objectives : Seungmagalgeun-tang (SMGGT) is traditional medicine widely used for inflammatory disease and flu. But SMGGT exhibits potent anti-inflammatory activity with an unknown mechanism. To elucidate the molecular mechanisms of SMGGT water extract on pharmacological and biochemical actions in inflammation, we examined the effect of SMGGT on pro-inflammatory mediators in Phorbol-12-myristate-13-acetate (PMA)+A23187-stimulated mast cells. Methods : In the present study, pro-inflammatory cytokine production was determined by performing enzyme-linked immunosorbent assay (ELISA), reverse transcription polymerase chain reaction (RT-PCR), and western blot analysis to measure the activation of MAPKs. Cells were treated with SMGGT 1 h prior to the addition of 50 nM of PMA and $1{\mu}M$ of A23187. Cell viability was measured by MTS assay. The investigation focused on whether SMGGT inhibited the expressions of interleukin-6 (IL-6), interleukin-8 (IL-8) and mitogen-activated protein kinases (MAPKs) in PMA+A23187-stimulated mast cells. Results : SMGGT has no cytotoxicity at examined concentration (100, 250, and $500{\mu}g/ml$). Also, gene expression of IL-6 and IL-8 in HMC-1 cells stimulated by PMA+A23187 was down regulated by SMGGT. Furthermore, SMGGT suppressed the PMA+A23187-induced phosphorylation of extracellular signal-regulated kinase (ERK) and c-jun N-terminal Kinase(JNK). But, SMGGT could not regulate phosphorylation of p38 MAPK. Conclusions : These results suggest that SMGGT has inhibitory effects on PMA+A23187-induced IL-6 and IL-8 production. These inhibitory effects occur through blockades on the phosphorylation of ERK and JNK.
Methicillin-resistant Staphylococcus aureus (MRSA) infection has become a serious clinical problem worldwide, and alternative natural or combination drug therapies are required for its treatment. The aim of the present study was to examined the antimicrobial activity of luteolin (LUT) against MRSA. Luteolin is a polyphenolic flavonoid compound with a wide spectrum of biological activities. The antimicrobial activities of LUT and the antibiotics ampicillin (AM), oxacillin (OX) and gentamicin (GT), used alone or in combination, were evaluated against five clinical MRSA isolates and two reference strains using a minimum inhibitory concentration (MIC) assay, MTT colorimetric assay, checkerboard dilution test and time-kill assay. The MIC of LUT against all strains was found to be 62.5 µg/ml. The combinations of LUT and antibiotics exhibited a synergistic effect against MRSA in the majority of cases, as determined by the checkerboard method. Time-kill curves revealed that a combination of LUT with AM, OX or GT significantly reduced bacterial counts, which dropped below the lowest detectable limit after 24 h. These results indicate that LUT potentiates the effects of β-lactam and aminoglycoside antibiotics against MRSA.
Bojungikki-tang (BJIT) is a traditional herbal medicine used in Korea, Japan, and China to treat gastrointestinal disorders. In this study, we aimed to investigate whether BJIT has protective effects against radiation-induced intestinal injury and to predict the underlying therapeutic mechanisms and related pathways via network pharmacological analyses. BJIT was injected intraperitoneally (50 mg/kg body weight) to C3H/HeN mice at 36 and 12 h before exposure to partial abdominal irradiation (5 Gy and 13 Gy) to evaluate the apoptotic changes and the histological changes and variations in inflammatory cytokine mRNA levels in the jejunum, respectively. Through in silico network analysis, we predicted the mechanisms underlying BJIT-mediated regulation of radiation-induced intestinal injury. BJIT reduced the level of apoptosis in the jejunal crypts 12 h post 5-Gy irradiation. Histological assessment revealed intestinal morphological changes in irradiated mice 3.5 days post 13-Gy irradiation. Furthermore, BJIT decreased inflammatory cytokine levels following radiation exposure. Apoptosis, TNF, p53, VEGF, toll-like receptor, PPAR, PI3K-Akt, and MAPK signaling pathways, as well as inflammatory bowel disease (IBD), were found to be linked to the radioprotective effects of BJIT against intestinal injury. According to our results, BJIT exerted its potential protective effects by attenuating histopathological changes in jejunal crypts and suppressing inflammatory mediator levels. Therefore, BJIT is a potential therapeutic agent that can treat radiation-induced intestinal injury and its associated symptoms.