Abstract HIV infection rapidly causes localized inflammation, which contributes to viral pathogenesis by recruiting cells to become infected. At the same time, the stable HIV reservoir forms swiftly and persists over the life of the individual, likely due to infection of long-lived central memory CD4 T cells. The elimination/control of the reservoir is critical to an HIV cure. We sought to understand how host inflammatory responses to HIV drive the formation of the viral reservoir. Our early studies found that CD4 T cells rapidly produce the chemoattractant CCL2 following HIV infection, and this host response is dependent on HIV reverse transcription but not integration of viral DNA. We proposed that CCL2 produced early in response to HIV lures cells bearing the receptor—CCR2—to the zone of infection. Using mass cytometry, we identified a novel population of human lymphoid CCR2+ CD4 T cells that co-express CCR5 and have a central memory phenotype, along with markers associated with the HIV reservoir. We found that CCR2/5+ cells migrate in response to CCL2, fuse to R5 and X4-tropic HIV and support productive and latent infection. To measure the HIV reservoir in vivo, we sorted CCR2/5+ cells from PBMCs of HIV-infected ART-suppressed individuals and measured integrated HIV proviral DNA. Our preliminary findings show that CCR2/5+ cells have significantly higher levels of integrated HIV than CCR-negative memory (12-fold, p = 0.046) or naïve cells (28-fold, p = 0.012). We propose that HIV hijacks the host response to the virus to recruit CCR2+ cells, which may become latently infected to form the long-lived reservoir, providing a link between inflammation and reservoir seeding. We are now testing if blockade of CCL2 disrupts formation of the HIV reservoir.
Complementary DNAs corresponding to the human receptor for interleukin 2 (IL-2) have been molecularly cloned, sequenced, and expressed in COS-1 cells. The human genome appears to contain a single structural gene for this receptor; however, when transcribed at least two messenger RNAs (mRNAs) are produced which vary in length due to the use of different polyadenylation signals. Sequence analysis of the cloned complementary DNAs indicates an alternate pathway of mRNA processing for this receptor. Splicing of a 216 base pairs segment contained within the protein coding region results in an mRNA unable to code for the IL-2 receptor. In contact complementary DNAs corresponding to unspliced mRNA encode membrane receptors which bind both IL-2 and anti-Tac (monoclonal anti-IL-2 receptor antibody). Analysis of the deduced amino acid sequence reveals that the receptor is composed of 272 amino acids including a signal peptide 21 amino acids in length. Hydrophobicity analysis suggests a single 19 amino acid transmembrane domain. A short intracytoplasmic domain composed of 13 amino acids is present at the carboxy terminus and contains three potential phosphate acceptor sites (serine and threonine but not tyrosine) and typical positively charged amino acids presumably involved in cytoplasmic anchoring. Two sites for N-linked glycosylation sites and numerous extracytoplasmic O-linked glycosylation sites are present.
Human interleukin 2 (IL-2) receptor cDNA derived from HUT 102B2 cells was stably expressed in murine L cells. These L cell transfectants (a) displayed surface receptors of the aberrant size of the IL-2 receptors on HUT 102B2 cells, (b) did not respond to exogenous IL-2 with augmented proliferation, and (c) expressed low affinity but not high affinity receptors for IL-2.
Using anti-Tac, a monoclonal anti-interleukin 2 (IL-2) receptor antibody, we have explored the possibility that certain activated B cells display receptors for IL-2. Resting normal B cells and unselected B cell lines established from normal individuals were Tac antigen negative. In contrast, the cell surface Tac antigen expression was demonstrable on 6 of 10 B cell lines from patients with Burkitt's lymphoma, 5 of 6 B cell lines derived from patients with HTLV-I-associated adult T cell leukemia (including all four that had integrated HTLV-I into their genome), and on certain normal B cells activated with pokeweed mitogen. Furthermore, cloned Epstein-Barr virus-transformed B cell lines derived from Tac-positive normal B cells continued to express the Tac antigen in long-term cultures and manifested high affinity IL-2 receptors identified in binding studies with purified radiolabeled IL-2. The line 5B4 developed in the present study could be induced with purified JURKAT-derived or recombinant IL-2 to express a larger number of IL-2 receptors. Furthermore, the addition of IL-2 to the 5B4 B cell line augmented IgM synthesis, which could be blocked by the addition of anti-Tac. The size of the IL-2 receptors expressed on the cloned normal B cell lines was similar (53,000-57,000 daltons) to that of receptors on phytohemagglutinin-stimulated T cell lymphoblasts. Thus, certain malignant and activated normal B cells display the Tac antigen and manifest high affinity receptors for IL-2. These data suggest that IL-2 may play a role in the differentiation of activated B cells into immunoglobulin-synthesizing and -secreting cells.
CD4 T lymphocytes belong to diverse cellular subsets whose sensitivity or resistance to HIV-associated killing remains to be defined. Working with lymphoid cells from human tonsils, we characterized the HIV-associated depletion of various CD4 T cell subsets using mass cytometry and single-cell RNA-seq. CD4 T cell subsets preferentially killed by HIV are phenotypically distinct from those resistant to HIV-associated cell death, in a manner not fully accounted for by their susceptibility to productive infection. Preferentially-killed subsets express CXCR5 and CXCR4 while preferentially-infected subsets exhibit an activated and exhausted effector memory cell phenotype. Single-cell RNA-seq analysis reveals that the subsets of preferentially-killed cells express genes favoring abortive infection and pyroptosis. These studies emphasize a complex interplay between HIV and distinct tissue-based CD4 T cell subsets, and the important contribution of abortive infection and inflammatory programmed cell death to the overall depletion of CD4 T cells that accompanies untreated HIV infection.
In infected people, the HIV-1 envelope glycoprotein (Env) constantly evolves to escape the immune response while retaining the essential elements needed to mediate viral entry into target cells. The extensive genetic variation of Env is particularly striking in the V1/V2 hypervariable domains. In this study, we investigated the trade-off, in terms of fusion efficiency, for encoding V1/V2 domains of different lengths. We found that natural variations in V1/V2 length exert a profound impact on HIV-1 entry. Variants encoding compact V1/V2 domains mediated fusion with higher efficiencies than related Envs encoding longer V1/V2 domains. By exchanging the V1/V2 domains between Envs of the same infected person or between two persons linked by a transmission event, we further demonstrated that V1/V2 domains critically influence both Env incorporation into viral particles and fusion to primary CD4 T cells and monocyte-derived dendritic cells. Shortening the V1/V2 domains consistently increased Env incorporation and fusion, whereas lengthening the V1/V2 domains decreased Env incorporation and fusion. Given that in a new host transmitted founder viruses are distinguished by compact Envs with fewer glycosylation sites, our study points to fusion and possibly Env incorporation into virions as limiting steps for transmission of HIV-1 to a new host and suggests that the length and/or the N-glycosylation profile of the V1/V2 domain influences these early steps in the HIV life cycle.