Stent underexpansion, typically related to lesion calcification, is the strongest predictor of adverse events after percutaneous coronary intervention (PCI). Although uncommon, underexpansion may also occur in non-severely calcified lesions.
BACKGROUND: Although clinical benefits of intravascular imaging-guided percutaneous coronary intervention (PCI) in patients with complex coronary artery lesions have been observed in previous trials, the cost-effectiveness of this strategy is uncertain. METHODS: RENOVATE-COMPLEX-PCI (Randomized Controlled Trial of Intravascular Imaging Guidance vs Angiography-Guidance on Clinical Outcomes After Complex Percutaneous Coronary Intervention) was conducted in Korea between May 2018 and May 2021. This prespecified cost-effectiveness substudy was conducted using Markov model that simulated 3 states: (1) post-PCI, (2) spontaneous myocardial infarction, and (3) death. A simulated cohort was derived from the intention-to-treat population, and input parameters were extracted from either the trial data or previous publications. Cost-effectiveness was evaluated using time horizon of 3 years (within trial) and lifetime. The primary outcome was incremental cost-effectiveness ratio (ICER), an indicator of incremental cost on additional quality-adjusted life years (QALYs) gained, in intravascular imaging-guided PCI compared with angiography-guided PCI. The current analysis was performed using the Korean health care sector perspective with reporting the results in US dollar (1200 Korean Won, ₩=1 dollar, $). Willingness to pay threshold was $35 000 per QALY gained. RESULTS: A total of 1639 patients were included in the trial. During 3-year follow-up, medical costs ($8661 versus $7236; incremental cost, $1426) and QALY (2.34 versus 2.31; incremental QALY, 0.025) were both higher in intravascular imaging-guided PCI than angiography-guided PCI, resulting incremental cost-effectiveness ratio of $57 040 per QALY gained within trial data. Conversely, lifetime simulation showed total cumulative medical cost was reversed between the 2 groups ($40 455 versus $49 519; incremental cost, −$9063) with consistently higher QALY (8.24 versus 7.89; incremental QALY, 0.910) in intravascular imaging-guided PCI than angiography-guided PCI, resulting in a dominant incremental cost-effectiveness ratio. Consistently, 70% of probabilistic iterations showed cost-effectiveness of intravascular imaging-guided PCI in probabilistic sensitivity analysis. CONCLUSIONS: The current cost-effectiveness analysis suggests that imaging-guided PCI is more cost-effective than angiography-guided PCI by reducing medical cost and increasing quality-of-life in complex coronary artery lesions in long-term follow-up. REGISTRATION: URL: https://www.clinicaltrials.gov ; Unique identifier: NCT03381872.
3 dimensional (3D) scaling extensibility on epitaxial source drain strain technology toward Fin FET and beyond was discussed in terms of performance, uniformity and reliability. Horizontal sigma shape for the epitaxial strain technology is an attractive alternative for Fin FET and beyond. Its structural and electrical superiority was demonstrated.
Importance Complete revascularization by non–infarct-related artery (IRA) percutaneous coronary intervention (PCI) in patients with acute myocardial infarction is standard practice to improve patient prognosis. However, it is unclear whether a fractional flow reserve (FFR)–guided or angiography-guided treatment strategy for non-IRA PCI would be more cost-effective. Objective To evaluate the cost-effectiveness of FFR-guided compared with angiography-guided PCI in patients with acute myocardial infarction and multivessel disease. Design, Setting, and Participants In this prespecified cost-effectiveness analysis of the FRAME-AMI randomized clinical trial, patients were randomly allocated to either FFR-guided or angiography-guided PCI for non-IRA lesions between August 19, 2016, and December 24, 2020. Patients were aged 19 years or older, had ST-segment elevation myocardial infarction (STEMI) or non-STEMI and underwent successful primary or urgent PCI, and had at least 1 non-IRA lesion (diameter stenosis >50% in a major epicardial coronary artery or major side branch with a vessel diameter of ≥2.0 mm). Data analysis was performed on August 27, 2023. Intervention Fractional flow reserve–guided vs angiography-guided PCI for non-IRA lesions. Main Outcomes and Measures The model simulated death, myocardial infarction, and repeat revascularization. Future medical costs and benefits were discounted by 4.5% per year. The main outcomes were quality-adjusted life-years (QALYs), direct medical costs, incremental cost-effectiveness ratio (ICER), and incremental net monetary benefit (INB) of FFR-guided PCI compared with angiography-guided PCI. State-transition Markov models were applied to the Korean, US, and European health care systems using medical cost (presented in US dollars), utilities data, and transition probabilities from meta-analysis of previous trials. Results The FRAME-AMI trial randomized 562 patients, with a mean (SD) age of 63.3 (11.4) years. Most patients were men (474 [84.3%]). Fractional flow reserve–guided PCI increased QALYs by 0.06 compared with angiography-guided PCI. The total cumulative cost per patient was estimated as $1208 less for FFR-guided compared with angiography-guided PCI. The ICER was −$19 484 and the INB was $3378, indicating that FFR-guided PCI was more cost-effective for patients with acute myocardial infarction and multivessel disease. Probabilistic sensitivity analysis showed consistent results and the likelihood iteration of cost-effectiveness in FFR-guided PCI was 97%. When transition probabilities from the pairwise meta-analysis of the FLOWER-MI and FRAME-AMI trials were used, FFR-guided PCI was more cost-effective than angiography-guided PCI in the Korean, US, and European health care systems, with an INB of $3910, $8557, and $2210, respectively. In probabilistic sensitivity analysis, the likelihood iteration of cost-effectiveness with FFR-guided PCI was 85%, 82%, and 31% for the Korean, US, and European health care systems, respectively. Conclusions and Relevance This cost-effectiveness analysis suggests that FFR-guided PCI for non-IRA lesions saved medical costs and increased quality of life better than angiography-guided PCI for patients with acute myocardial infarction and multivessel disease. Fractional flow reserve–guided PCI should be considered in determining the treatment strategy for non-IRA stenoses in these patients. Trial Registration ClinicalTrials.gov Identifier: NCT02715518