Abstract Understanding the mechanisms of assembly and disassembly of macromolecular structures in cells relies on solving biomolecular interactions. However, those interactions often remain unclear because tools to track molecular dynamics are not sufficiently resolved in time or space. In this study, we present a straightforward method for resolving inter‐ and intra‐molecular interactions in cell adhesive machinery, using quantum dot (QD) based Förster resonance energy transfer (FRET) nanosensors. Using a mechanosensitive protein, talin, one of the major components of focal adhesions, we are investigating the mechanosensing ability of proteins to sense and respond to mechanical stimuli. First, we quantified the distances separating talin and a giant unilamellar vesicle membrane for three talin variants. These variants differ in molecular length. Second, we investigated the mechanosensing capabilities of talin, i.e., its conformational changes due to mechanical stretching initiated by cytoskeleton contraction. Our results suggest that in early focal adhesion, talin undergoes stretching, corresponding to a decrease in the talin‐membrane distance of 2.5 nm. We demonstrate that QD‐FRET nanosensors can be applied for the sensitive quantification of mechanosensing with a sub‐nanometer accuracy.
Two fluorogenic systems based on BODIPY have been confronted as probes for biotin receptor in live cells. The self-quenched dimer that lights up in the non-polar membrane was found to be more efficient than the viscosity-sensitive molecular rotor.
Amphiphilic cyclodextrins (CDs) are good candidates to functionalize natural membranes as well as synthetic vesicles. In this paper, we provide a full description of the interfacial behavior of pure 6I,6IV-(β-cholesteryl)succinylamido-6I,6IV-(6-deoxy-per-(2,3,6-O-methyl))cycloheptaose (TBdSC) and how it inserts in dipalmitoyl-l-α-phosphatidylcholine (DPPC) monolayers as a membrane model. Langmuir isotherms of pure TBdSC suggest a reorganization upon compression, which could be clarified using X-ray reflectivity. The CD head can adjust its conformation to the available area per molecule. A compatible model involving a rotation around a horizontal axis defined by the two selectively substituted glucose units is proposed. The in-plane structure is characterized at all scales by Brewster angle microscopy (BAM) on the water surface and atomic force microscopy (AFM) on monolayers deposited on solid substrates. The same tools are used for its mixtures with DPPC. We show in particular that TBdSC seems to be soluble in the liquid-expanded DPPC. However, phase segregation occurs at higher pressure, allowing for sequentially liquid-condensed DPPC and high-pressure conformation of TBdSC. This gives rise to a remarkable contrast inversion in both imaging methods.
Dioxaborine-based materials, including molecules and nanoparticles, possess various interesting photophysical properties allowing advanced bioimaging from cells to in vivo.
Staining of the plasma membrane (PM) is essential in bioimaging, as it delimits the cell surface and provides various information regarding the cell morphology and status. Herein, the lipophilicity of a green emitting BODIPY fluorophore was tuned by gradual functionalization with anchors composed of zwitterionic and aliphatic groups, thus yielding three different amphiphilic dyes. We found that BODIPY bearing one or three anchors failed in efficiently staining the PM: the derivative with one anchor showed low affinity to PM and exhibited strong fluorescence in water due to high solubility, whereas BODIPY with three anchors aggregated strongly in media and precipitated before binding to the PM. In sharp contrast, the BODIPY bearing two anchors (B-2AZ, MemBright-488) formed virtually nonfluorescent soluble aggregates in aqueous medium that quickly deaggregated in the presence of PM, leading to a bright soluble molecular form (quantum yield of 0.92). This fluorogenic response allowed for efficient probing of the PM at low concentration (20 nM) with high signal to background ratio images in mono- as well as two-photon excitation microscopy. B-2AZ proved to selectively stain the PM in a more homogeneous manner than the commercially available fluorescently labeled lectin WGA. Finally, it was successfully used in 3D-imaging to reveal fine intercellular tunneling nanotubes in KB cells and to stain the PM in glioblastoma cells in spheroids.
An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.
Glycosaminoglycane (GAGs) sind wichtige sulfatierte Kohlenhydrate der extrazellulären Matrix. Die Synthese von GAGs ist schwierig und die Einführung definierter Sulfatierungsmuster eine große Herausforderung. Die automatisierte Synthese von Chondroitinhexasacchariden an der Festphase gelang nun unter der Verwendung eines lichtlabilen Linkers, der effizient in einem Durchflussphotoreaktor abgespalten werden kann. As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors. Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
New hybrid nanoparticles have been obtained by simple nanoprecipitation using fluorescent labeling of both the oily core (BODIPY) and the polymeric shell (rhodamine) thus allowing the use of electrophoresis to assess their formation and stability.