Leptin may induce inflammation in asthma by activation of Th2 cells. It has also been demonstrated that leptin expression increases upon inflammation and that asthmatic patients show increased serum leptin levels. We hypothesized that the polymorphism in leptin (LEP) and leptin receptor (LEPR) genes is associated with childhood asthma and may affect their serum level. To our knowledge, there are no reports analyzing LEP and LEPR polymorphisms in association with their serum levels in childhood asthma. We analyzed 35 subjects: 25 asthmatic pediatric patients and 10 healthy children aged from 6 to 18. The diagnosis of allergic asthma was based on clinical manifestation, lung function, positive skin prick tests and increased immunoglobulin E levels. The polymorphisms were genotyped with use of polymerase chain reaction-restriction fragment length polymorphism method. Serum levels of leptin and leptin receptor were determined using BioVendor enzyme-linked immunosorbent assay kits. Statistical analysis was done with Statistica v.12. We observed that leptin levels were increased in asthmatic subjects as compared to healthy controls and were significantly higher during exacerbation than in the asymptomatic period (P = 0.025). We observed that LEP polymorphism (rs13228377) was associated with higher serum leptin levels in asthma and these two variables had high predictive value for asthma risk (P = 0.007, odds ratio 17.5, predictive accuracy 83.9%). LEPR polymorphisms did not show association with its serum level and asthma risk. LEP polymorphism may increase asthma risk via influence on its serum level.
Transient receptor potential channel vanilloid type 4 (TRPV4) is a Ca 2+ ‐ and Mg 2+ ‐permeable cation channel that influences oxidative metabolism and insulin sensitivity. The role of TRPV4 in pancreatic beta cells is largely unknown. Here, we characterize the role of TRPV4 in controlling intracellular Ca 2+ and insulin secretion in INS‐1E beta cells. Osmotic, thermal or pharmacological activation of TRPV4 caused a rapid rise of intracellular Ca 2+ and enhanced glucose‐stimulated insulin secretion. In the presence of the TRPV channel blocker ruthenium red (RuR) or after suppression of TRPV4 protein production, TRPV4 activators failed to increase [Ca 2+ ] i and insulin secretion in INS‐1E cells.
MOTS-c peptide is a member of the group of mitochondria-derived peptides (MDP). It is a product of the open reading frame in the 12S RNA gene. Due to its features and functions in the body, this peptide is classified as a hormone. The first publications indicated that this hormone improves insulin sensitivity and lowers body weight in obese animals. This suggests that it may be an important peptide in maintaining the body's energy homeostasis. The aim of our work was to investigate the potential role of MOTS-c peptide during pregnancy, which is a condition prone to metabolic disorders. The research covered healthy, obese women and women with thyroid disorders. The obtained results indicated an increase in the concentration of MOTS-c in the blood of mothers and newborns in the obese group as compared to the healthy control group and a corresponding decrease in the concentration of this peptide in mothers and newborns in the group with hypothyroidism compared to the obese group. Moreover, we also observed a strong positive correlation between the concentration of MOTS-c in maternal blood and in umbilical cord blood. In summary, the MOTS-c peptide shows changes in blood concentration in various physiological states and may, in the future, become an important tool in the fight against metabolic diseases such as obesity or type 2 diabetes.
In mood disorders chronic stress contributes to decreased glucocorticoid receptor signalling in the brain and resistance in the periphery. We hypothesised that aberrant glucocorticoid receptor function may result from genetic predisposition and that decreased GR signalling in the brain correlates with the expression of genes regulating GR complex formation.We performed the association analysis of 698 patients: 490 patients with bipolar disorder and 208 patients with major depressive disorder and 564 control subjects. We genotyped 11 variants using TaqMan assays. Gene expression in the brain tissue was done in male Wistar rats after chronic mild stress protocol. The SRSF5 serum concentration was performed using ELISA. Data were analysed in Statistica and GraphPad.We found an association of STIP1 and SRSF5 variants with major depressive disorder and BAG1 variant with bipolar disorder. Gene expression analysis in a rat model of depression confirmed significant changes in the expression of SRSF5, BAG1, and FKBP4 in the brain. For SRSF5, we observed significantly increased expression in the serum of depressed females and male rats exposed to chronic stress.Our results indicate the involvement of genes associated with GR function, SRSF5, BAG1, and FKBP4 with susceptibility to mood disorders.
Abstract Trivalent chromium (Cr) and bitter melon ( Momordica charantia L., BM) have been shown to independently interact with the insulin signaling pathway leading to improvements in the symptoms of insulin resistance and diabetes in some animal models and human subjects. The aim of this study was to examine whether the combination of the two nutritional supplements could potentially have additive effects on treating these conditions in high-fat-fed streptozotocin (STZ)-induced diabetic rats. The experiment was conducted with 110 male Wistar rats divided into eleven groups and fed either a control or high-fat diet for 7 weeks. Half of the rats on the high-fat diet were injected with STZ (30 mg/kg body mass) to induce diabetes. The high-fat (HF) diets were then supplemented with a combination of Cr (as chromium(III) propionate complex, Cr3: either 10 or 50 mg Cr/kg diet) and bitter melon (lyophilized whole fruit: either 10 or 50 g/kg diet) for 6 weeks. After termination of the experiment, blood and internal organs were harvested for blood biochemical, hematological, and mineral (Cr) analyses using appropriate analytical methods. It was found that neither Cr(III) nor BM was able to significantly affect blood indices in HF and diabetic rats, but BM tended to improve body mass gain, blood glucose, and LDL cholesterol values, but decreased Cr content in the liver and kidneys of the Cr-co-supplemented type 2 diabetic model of rats. Supplementary Cr(III) had no appreciable effect on glucose and lipid metabolism in high-fat-fed STZ-induced diabetic rats. Supplementary BM fruit powder had some observable effects on body mass of high-fat-fed rats; these effects seem to be dampened when BM was co-administered with Cr. Cr(III) and BM appear to act as nutritional antagonists when both administered in food, probably due to binding of Cr by the polyphenol-type compounds present in the plant material.
The increasing prevalence of overweight and obesity and the rising awareness of their negative consequences are forcing researchers to take a new view of nutrition and its consequences for the metabolism of whole organisms as well as the metabolism of their individual systems and cells. Despite studies on nutrition having been carried out for a few decades, not many of them have focused on the impacts of these diets on changes in the metabolism and endocrine functions of isolated adipocytes. Therefore, we decided to investigate the effects of the long-term use (60 and 120 days) of a high-fat diet (HFD) and of a high-protein diet (HPD) on basic metabolic processes in fat cells—lipogenesis, lipolysis, and glucose uptake—and endocrine function, which was determined according to the secretion of adipokines into the incubation medium. Our results proved that the HPD diet improved insulin sensitivity, increased the intracellular uptake of glucose (p < 0.01) and its incorporation into lipids (p < 0.01) and modulated the endocrine function of these cells (decreasing leptin secretion; p < 0.01). The levels of biochemical parameters in the serum blood also changed in the HPD-fed rats. The effects of the HFD were inverse, as expected. We observed a decrease in adiponectin secretion and a diminished rate of lipogenesis (p < 0.01). Simultaneously, the secretion of leptin and resistin (p < 0.01) from isolated adipocytes increased. In conclusion, we noted that the long-term use of HPD and HFD diets modulates the metabolism and endocrine functions of isolated rat adipocytes. We summarize that an HFD had a negative effect on fat tissue functioning, whereas an HPD had positive results, such as increased insulin sensitivity and an improved metabolism of glucose and lipids in fat tissue. Moreover, we noticed that negative metabolic changes are reflected more rapidly in isolated cells than in the metabolism of the whole organism.