Today, a number of complementary molecular imaging methods are at our disposal, which can make a relevant contribution to early diagnosis, differential diagnosis, disease monitoring, and follow-up of neurodegenerative diseases. This includes long-established FDG-PET which provides valuable information on location and extent of pathology and has demonstrated great value for early diagnosis, short-term prognosis, and for differential diagnosis of various disorders on the basis of the endophenotype of disease. Imaging of the dopaminergic system has proven value in the workup of movement disorders. More recently introduced, amyloid-PET for the first time allows in vivo diagnostic assessment of a molecular neuropathology, most valuable for verification or exclusion of Alzheimer disease (AD), independent of the symptomatic appearance. Finally, new tracers for tau-PET imaging may allow the assessment of location, extent, and specific type of pathology, which may hold great value for early and differential diagnosis of neurodegeneration in the future.
Abstract Background and objective There are multiple pharmacological treatment options for motor symptoms of Parkinson’s disease (PD). These comprise multiple drug classes which are approved for the condition, including levodopa, dopamine agonists, COMT inhibitors, MAO-B inhibitors, NMDA-receptor antagonists, anticholinergics, and others. Some of the drugs are approved for monotherapy and combination therapy while others are only approved as adjunctive therapy to levodopa. Furthermore, treatment for special treatment situations, e.g., rescue medication for off-phases, for tremor, treatment during pregnancy and breast feeding is discussed and recommendations are given with further details. Methods The recommendations were based on systematic literature reviews, drafted by expert teams, consented in online polls followed by online consensus meetings of the whole German Parkinson’s Guideline Group, and publicly released in November 2023. Results In the new S2k (i.e., consensus-based) guidelines, the pharmacotherapy of the motor symptoms of PD is discussed in five chapters. These comprise “Parkinson medication”, “Initial monotherapy”, “Early combination therapy”, “Fluctuations and dyskinesia”, and “Parkinsonian tremor”. Furthermore, there is a chapter for special treatment situations, including perioperative management, freezing of gait, and pregnancy and breastfeeding. Conclusion The recommendations for the pharmacotherapy of motor symptoms of PD have been updated. Newly available drugs have been added, while other drugs (e.g., ergoline dopamine agonists, anticholinergics, budipine) have been removed from the recommendations.
Ocular motor apraxia (OA) is an inability to initiate voluntary saccades in a head-fixed position, while saccades can be initiated by the vestibulo-ocular reflex (indicating dysfunction in the frontal eye fields).
Abstract The relative inability to produce effortful movements is the most specific motor sign of Parkinson’s disease, which is primarily characterized by loss of dopaminergic terminals in the putamen. The motor motivation hypothesis suggests that this motor deficit may not reflect a deficiency in motor control per se, but a deficiency in cost-benefit considerations for motor effort. For the first time, we investigated the quantitative effect of dopamine depletion on the motivation of motor effort in Parkinson’s disease. A total of 21 early-stage, unmedicated patients with Parkinson’s disease and 26 healthy controls were included. An incentivized force task was used to capture the amount of effort participants were willing to invest for different monetary incentive levels and dopamine transporter depletion in the bilateral putamen was assessed. Our results demonstrate that patients with Parkinson’s disease applied significantly less grip force than healthy controls, especially for low incentive levels. Congruously, decrease of motor effort with greater loss of putaminal dopaminergic terminals was most pronounced for low incentive levels. This signifies that putaminal dopamine is most critical to motor effort when the trade-off with the benefit is poor. Taken together, we provide direct evidence that the reduction of effortful movements in Parkinson’s disease depends on motivation and that this effect is associated with putaminal dopaminergic degeneration.
Abstract Ineffective use of adaptive cognitive strategies (e.g., reappraisal) to regulate emotional states is often reported in a wide variety of psychiatric disorders, suggesting a common characteristic across different diagnostic categories. However, the extent of shared neurobiological impairments is incompletely understood. This study, therefore, aimed to identify the transdiagnostic neural signature of disturbed reappraisal using the coordinate‐based meta‐analysis (CBMA) approach. Following the best‐practice guidelines for conducting neuroimaging meta‐analyses, we systematically searched PubMed, ScienceDirect, and Web of Science databases and tracked the references. Out of 1,608 identified publications, 32 whole‐brain neuroimaging studies were retrieved that compared brain activation in patients with psychiatric disorders and healthy controls during a reappraisal task. Then, the reported peak coordinates of group comparisons were extracted and several activation likelihood estimation (ALE) analyses were performed at three hierarchical levels to identify the potential spatial convergence: the global level (i.e., the pooled analysis and the analyses of increased/decreased activations), the experimental‐contrast level (i.e., the analyses of grouped data based on the regulation goal, stimulus valence, and instruction rule) and the disorder‐group level (i.e., the analyses across the experimental‐contrast level focused on increasing homogeneity of disorders). Surprisingly, none of our analyses provided significant convergent findings. This CBMA indicates a lack of transdiagnostic convergent regional abnormality related to reappraisal task, probably due to the complex nature of cognitive emotion regulation, heterogeneity of clinical populations, and/or experimental and statistical flexibility of individual studies.
Deviations of brain age from chronologic age, known as the brain age gap (BAG), have been linked to neurodegenerative diseases such as Alzheimer disease (AD). Here, we compare the associations of MRI-derived (atrophy) or 18F-FDG PET–derived (brain metabolism) BAG with cognitive performance, neuropathologic burden, and disease progression in cognitively normal individuals (CNs) and individuals with subjective cognitive decline (SCD) or mild cognitive impairment (MCI). Methods: Machine learning pipelines were trained to estimate brain age from 185 matched T1-weighted MRI or 18F-FDG PET scans of CN from the Alzheimer's Disease Neuroimaging Initiative and validated in external test sets from the Open Access of Imaging and German Center for Neurodegenerative Diseases–Longitudinal Cognitive Impairment and Dementia studies. BAG was correlated with measures of cognitive performance and AD neuropathology in CNs, SCD subjects, and MCI subjects. Finally, BAG was compared between cognitively stable and declining individuals and subsequently used to predict disease progression. Results: MRI (mean absolute error, 2.49 y) and 18F-FDG PET (mean absolute error, 2.60 y) both estimated chronologic age well. At the SCD stage, MRI-based BAG correlated significantly with beta-amyloid1-42 (Aβ1-42) in cerebrospinal fluid, whereas 18F-FDG PET BAG correlated with memory performance. At the MCI stage, both BAGs were associated with memory and executive function performance and cerebrospinal fluid Aβ1-42, but only MRI-derived BAG correlated with phosphorylated-tau181/Aβ1-42. Lastly, MRI-estimated BAG predicted MCI-to-AD progression better than 18F-FDG PET–estimated BAG (areas under the curve, 0.73 and 0.60, respectively). Conclusion: Age was reliably estimated from MRI or 18F-FDG PET. MRI BAG reflected cognitive and pathologic markers of AD in SCD and MCI, whereas 18F-FDG PET BAG was sensitive mainly to early cognitive impairment, possibly constituting an independent biomarker of brain age-related changes.