Surviving in long-term outsourced maintenance contracts in current financial situation necessitates better understanding of what customers attribute as value and its dimensions. This paper reports on findings from research undertaken with a supplier of automation products and services and its customers. Structured interviewing technique has been conducted in four customer companies from different industrial sectors at different organizational levels. Value dimensions and their role in different decision making levels are identified.
Products that are manufactured using near net-shape manufacturing processes must be designed with regard to the constraints of the manufacturing process. The purpose of this research project is to develop a knowledge based manufacturing advisor to assist designers of products for casting and injection moulding. The manufacturing advisor is tightly integrated with a CAD solid modeller, and uses a novel feature recognition approach to identify the manufacturing features of the part. A mid-surface abstraction from the part’s solid geometry is used as the basis for feature recognition, and it is argued that this is a better approach to feature recognition for this class of parts than a CAD solid model. Initial testing indicates that the feature recognition process is able to effectively recognise a range of features but that the quality of the feature recognition is dependent on the mid-surface representation that is generated.
Modern aircraft are more integrated with advanced systems functionalities, which result in ever-increasing aircraft complexity, further development difficulties and development delays. These system complexities are mostly in the form of system interactions that make it difficult to understand the overall system characteristics. At the early stages of final assembly line (FAL) design, one of the most important objectives is to arrange the installation and test tasks from components to sub-systems and systems in the proper sequence to meet the designed functions and prevent hazards from the integration process. Improper sequencing of the final assembly process will cause rework, time delays, cost and potential safety risk in development. In the field of final assembly line design, previous research has mostly focused on assembly line balancing or supply chain design based on structural parts assembly. However, these approaches do not consider the early final assembly line definition or test allocation for system functions. In this paper, the research proposes a method based on a systems engineering view and integrated computer aided design (CAD) to help better understand system interactions and generate viable final assembly process sequencing. This research aims to develop a concept of unified master data for final assembly design, which contains 3D geometrical CAD, system functions and interaction characteristics. The paper will present the methodology framework, key concepts and associated industrial software packages for implementation. The paper concludes with further discussion of an initial case study.
In today's competitive market many consumer products are designed with complex curved shapes to meet customers' demands for styling and ergonomics. These styled products are commonly manufactured using moulding processes because they can produce a wide range of freeform shapes at relatively low cost. However, although injection moulding and metal casting allow a great deal of design freedom they also make significant demands on the designer to ensure that parts are designed with due regard for manufacturability. This paper describes a knowledge based moulding advisor that has been developed to provide design for moulding advice to designers during the design process. The main contributions of the research are the development of a hierarchical knowledge representation to allow moulding advice to be generated at different levels of detail and the integration of the expert system with a geometric part description extracted from a Computer Aided Design (CAD) solid model. A demonstrator for the manufacturing advisor has been implemented using the expert system shell CLIPS and integrated with CAD using feature recognition. The moulding advisor is able to generate tailored design for moulding advice for a range of manufacturing processes and materials and evaluate the manufacturability of a designed part at the feature level. The paper provides a case study for a simple moulded test part.
Defence Contractors and NATOMinistry of Defences (MoDs) are currently exploiting Additive Manufacturing (AM) Technology to improve availability of defence platforms and support soldiers deployed in remote Area of Operations (AO). Additive Manufacturing is considered a disruptive technology when employed in a military context to reduce the reliance on supply chains and improve the responsiveness to Operation Tempo (OT). This papers aims at presenting a novel system approach to model the end-to-end process of delivering a product printed with AM and estimate accurately the time and costs of AM. Understanding better the time and costs of AM will allow the MoDs and Defence Contractors to perform comparison with current practices and support their decision making in AM technology acquisition.
Wire + Arc Additive Manufacturing (WAAM) has proven its capability to build medium to large metallic parts thanks to its high-rate deposition and its potentially unlimited build volume. Moreover, the low-cost equipment and the ability to deposit various metals make WAAM a strong candidate to become a standard industrial process. However, like all Additive Manufacturing (AM) technologies, the key to manufacturing suitable parts lies in the generation of an optimised path that guarantees a uniform defect-free deposition. Most AM technologies have been able to use traditional path strategies derived from CNC machining, but the specificities inherent to the arc deposition make the use of those solutions unreliable across a variety of topologies. Nevertheless, studies have shown that superior results can be achieved by using a feature-based design approach, but developing a path strategy for each new geometry would be a very time-consuming task. Therefore, this paper introduces the Modular Path Planning (MPP) solution that aims to incorporate the modularity of feature-based design into the traditional layer-by-layer strategy. By dividing each layer into individual deposition sections, this method allows users to adapt the path planning to the targeted geometry allowing the construction of a wide variety of complex geometries. This paper also proposes a software implementation that limits user interventions and reduces user inputs to basic CAD modelling operations. Moreover, the MPP has been compared to a traditional path planning solution and used to build a complex part for industry.
A Product-Service System (PSS) is an integrated combination of products and services. This Western concept embraces a service-led competitive strategy, environmental sustainability, and the basis to differentiate from competitors who simply offer lower priced products. This paper aims to report the state-of-the-art of PSS research by presenting a clinical review of literature currently available on this topic. The literature is classified and the major outcomes of each study are addressed and analysed. On this basis, this paper defines the PSS concept, reports on its origin and features, gives examples of applications along with potential benefits and barriers to adoption, summarizes available tools and methodologies, and identifies future research challenges.