Brugada syndrome (BrS) primarily associates with the loss of sodium channel function. Previous studies showed features consistent with sodium current (INa) deficit in patients carrying desmosomal mutations, diagnosed with arrhythmogenic cardiomyopathy (or arrhythmogenic right ventricular cardiomyopathy). Experimental models showed correlation between the loss of expression of desmosomal protein plakophilin-2 (PKP2) and reduced INa. We hypothesized that PKP2 variants that reduce INa could yield a BrS phenotype, even without overt structural features characteristic of arrhythmogenic right ventricular cardiomyopathy.We searched for PKP2 variants in the genomic DNA of 200 patients with a BrS diagnosis, no signs of arrhythmogenic cardiomyopathy, and no mutations in BrS-related genes SCN5A, CACNa1c, GPD1L, and MOG1. We identified 5 cases of single amino acid substitutions. Mutations were tested in HL-1-derived cells endogenously expressing NaV1.5 but made deficient in PKP2 (PKP2-KD). Loss of PKP2 caused decreased INa and NaV1.5 at the site of cell contact. These deficits were restored by the transfection of wild-type PKP2, but not of BrS-related PKP2 mutants. Human induced pluripotent stem cell cardiomyocytes from a patient with a PKP2 deficit showed drastically reduced INa. The deficit was restored by transfection of wild type, but not BrS-related PKP2. Super-resolution microscopy in murine PKP2-deficient cardiomyocytes related INa deficiency to the reduced number of channels at the intercalated disc and increased separation of microtubules from the cell end.This is the first systematic retrospective analysis of a patient group to define the coexistence of sodium channelopathy and genetic PKP2 variations. PKP2 mutations may be a molecular substrate leading to the diagnosis of BrS.
The cytoplasmic N-terminal domain in the connexins (Cx) has been implicated in determining several properties including connexin hetero-oligomerization, channel gating and regulation by polyamines. To elucidate the roles of potentially crucial amino acids, we produced site-directed mutants of connexins Cx40 and Cx43 (Cx40E12S,E13G and Cx43D12S,K13G) in which the charged amino acids at positions 12 and 13 were replaced with serine and glycine as found in Cx32. HeLa, N2a and HEK293 cells were transfected and studied by immunochemistry and double whole-cell patch clamping. Immunoblotting confirmed production of the mutant proteins, and immuno-fluorescence localized them to punctuate distributions along appositional membranes. Cx40E12S,E13G and Cx43D12S,K13G formed homotypic gap junction channels that allowed intercellular passage of Lucifer Yellow and electrical current, but these channels exhibited negligible voltage-dependent gating properties. Unlike wild-type Cx40, Cx40E12S,E13G channels were insensitive to block by 2 mM spermine. Affinity purification of material solubilized by Triton X-100 from cells co-expressing mutant Cx43 or mutant Cx40 with wild-type Cx40, Cx43 or Cx26 showed that introducing the mutations did not affect the compatibility or incompatibility of these proteins for heteromeric mixing. Co-expression of Cx40E12S,E13G with wild-type Cx40 or Cx43 dramatically reduced voltage-dependent gating. Thus, whereas the charged amino acids at positions 12 and 13 of Cx40 or Cx43 are not required for gap junction assembly or the compatibility of oligomerization with each other or with Cx26, they strongly influence several physiological properties including those of heteromeric channels.
Abstract Rapid impulse propagation is a defining attribute of the pectinated atrial myocardium and His-Purkinje system (HPS) that safeguards against atrial and ventricular arrhythmias, conduction block, and myocardial dyssynchrony. The complex transcriptional circuitry that dictates rapid conduction remains incompletely understood. Here, we demonstrate that ETV1 (ER81)-dependent gene networks dictate the unique electrophysiological characteristics of atrial and His-Purkinje myocytes. Cardiomyocyte-specific deletion of ETV1 results in cardiac conduction abnormalities, decreased expression of rapid conduction genes ( Nkx2–5 , Gja5 , and Scn5a ), HPS hypoplasia, and ventricularization of the unique sodium channel properties that define Purkinje and atrial myocytes in the adult heart. Forced expression of ETV1 in postnatal ventricular myocytes (VMs) reveals that ETV1 promotes a HPS gene signature while diminishing ventricular and nodal gene networks. Remarkably, ETV1 induction in human induced pluripotent stem cell-derived cardiomyocytes increases rapid conduction gene expression and inward sodium currents, converting them towards a HPS phenotype. Our data identify a cardiomyocyte-autonomous, ETV1-dependent pathway that is responsible for specification of rapid conduction zones in the heart and demonstrate that ETV1 is sufficient to promote a HPS transcriptional and functional program upon VMs.
OBJECTIVE To establish the ISSR fingerprint of the cortex of Magnolia officinalis produced from Enshi. METHODS Cultivar and habit identification was based on Inter-simple sequence repeats (ISSR). RESULTS Two ISSR primes could be used to construct the ISSR fingerprint of M. officinalis from Enshi. CONCLUSION The ISSR marker is an effective method for the cultivar and habit identification of the cortex of M. officinralis.
Abstract Epimedium is a very important economic genus not only for medicinal usage but also for horticulture. We used combined PI-DAPI (CPD) staining techniques and fluorescent in situ hybridization (FISH) with 5S and 45S rDNA probes to investigate the karyotypic and cytogenetic chracteristics of Epimedium species. All the tested species had the same chromosome number 2n=2x=12 and the same karyotype asymmetry type 2A. Just one pair of satellite chromosomes were found in each Epimedium species. Two different karyotype formulae were identified in the tested eight species. The CPD banding patterns varied among the eight Epimedium species. In the double-target FISH analysis, the 45S rDNA probe revealed the loci closely to the secondary constrictions of satellite chromosome pair and 5S rDNA were located on the short arms of one metacentric pairs in the specimens. The present results provide the basis for the molecular genetics in Epimedium.
AimsIt is well known that connexin43 (Cx43) forms gap junctions. We recently showed that Cx43 is also part of a protein-interacting network that regulates excitability. Cardiac-specific truncation of Cx43 C-terminus (mutant 'Cx43D378stop') led to lethal arrhythmias. Cx43D378stop localized to the intercalated disc (ID); cell–cell coupling was normal, but there was significant sodium current (INa) loss. We proposed that the microtubule plus-end is at the crux of the Cx43–INa relation. Yet, specific localization of relevant molecular players was prevented due to the resolution limit of fluorescence microscopy. Here, we use nanoscale imaging to establish: (i) the morphology of clusters formed by the microtubule plus-end tracking protein 'end-binding 1' (EB1), (ii) their position, and that of sodium channel alpha-subunit NaV1.5, relative to N-cadherin-rich sites, and (iii) the role of Cx43 C-terminus on the above-mentioned parameters and on the location-specific function of INa.
GENERAL COMMENTARY article Front. Pharmacol., 23 July 2013Sec. Pharmacology of Ion Channels and Channelopathies Volume 4 - 2013 | https://doi.org/10.3389/fphar.2013.00094