Biochar is a high carbon product of pyrolysis. Essentially, any biomass can be pyrolysed - that is, heated in the absence of oxygen, but the quality of the biochar depends upon feedstock materials and pyrolysis conditions. Biochar has been shown to increase soil carbon and to reduce greenhouse gas emissions.
The treatment of festering pathogenic bacteria-induced skin wounds with increased inflammation is an ongoing challenge. The traditional antibacterial photothermal therapy always results in localized hyperthermia (over 50 °C), which inevitably delays tissue recovery. To address this serious issue, we devise a novel photonic hydrogel by integrating urchin-like Bi2S3 nano-heterojunctions (nano-HJs) into double-network hydrogels for infected skin regeneration. The synergy of NIR-triggered heat and ROS enables the hydrogels to achieve a rapid germicidal efficacy against bacteria within 15 min at mild temperature (below 50 °C). In vitro cell analysis results revealed that the photonic hydrogels exhibit superior cytocompatibility even after NIR illumination. More importantly, an in vivo study demonstrated that the photonic hydrogel dressings have a robust ability of accelerating contagious full-thickness wound regeneration through debriding abscesses, eliminating pathogens, improving collagen deposition, promoting angiogenesis, and adjusting the inflammation state. This photonic hydrogel system provides a general management strategy for the remedy of infectious wounds, where the incorporation of nano-HJs endows the hydrogels with the photodisinfection ability; in addition, the multifunctional hydrogels alleviate the damage from overwhelming heat towards surrounding tissues during phototherapy and steer the inflammation during the process of tissue regeneration. Accordingly, this work highlights the promising application of the photonic hydrogels in conquering refractory pathogen-invaded infection.
Abstract For quick disinfection treatment, phototherapy, including photothermal therapy and photodynamic therapy, has emerged as a promising alternative to conventional methods. However, the bactericidal effect of phototherapy, which only works upon light, is short‐lived. The remaining bacteria in situ may repopulate when the irradiation of light is withdrawn. To address this refractory concern, an antibacterial fibrous membrane consisting of electrospun poly (polycaprolactone) scaffolds and polydopamine (pDA) coated MXene/Ag 3 PO 4 bioheterojunctions (MX@AgP bio‐HJs) is devised and developed. Upon near‐infrared (NIR) illumination, the MX@AgP nanoparticle (NP) in nanofibrous electrospun membranes exert the excellent bactericidal effect of phototherapy and release Ag + ions which stop the remaining bacteria from multiplying in the dark state. When removing NIR light, pDA in situ reduces Ag + ions to Ag 0 NPs to realize the self‐rechargeability of Ag + ions and provides enough Ag + ions for the second phototherapy. In vivo results show that photoactivated nanofibrous membranes can re‐shape an infected wound microenvironment to the regenerative microenvironment through killing bacteria, ceasing bleeding, increasing epithelialization, and collagen deposition on the wound bed, as well as promoting angiogenesis. As predicted, the proposal work offers potential prospects for nanofibrous membranes with NIR‐assisted “self‐rechargeable” antibacterial properties to treat bacteria‐infected full‐thickness wounds.
In this study, Janus droplets are fabricated by inducing phase separation of single‐phase droplets made up of an aqueous two‐phase system (ATPS). The resultant Janus droplets are highly monodisperse in structures and internal morphologies. Due to the affinity partitioning properties of ATPS, encapsulated ingredients can automatically partition into different compartments of the resultant Janus droplets. The use of biocompatible and cytocompatible ATPS also enables the encapsulation of enzymes and cells in the resultant droplets with their activity preserved at a relatively high level. image
A first toxicity identification evaluation (TIE) was conducted in three phases using the Microtox test to identify the major toxicant(s) in effluent discharged from a dyeing plant in Hong Kong. In Phase I toxicity characterization indicated that anions were likely to be the major toxicants for the entire effluent. In Phase II concentrations of sulfite and other anions in the original and the anion exchange resin-treated effluent samples were determined by ion chromatography. Anions, which were found in the effluent at comparatively high concentrations and were suspected of being responsible for the toxicity to luminescent bacteria, were selected for further study in Phase III. Investigation in Phase III using the spiking and mass balance approaches confirmed that the sulfite ion was the major toxicant in the effluent.
Perfluorocarbon liquid (PFCL) can migrate into subretinal space in detached and stiffened retina with open holes during vitreoretinal surgery. An innovative 'soft shell' technique was introduced to reduce the complication using hyaluronate (HA) to 'cover' the retinal hole. This study aims to study the effectiveness of this technique in vitro.
Methods
Ex vivo porcine retina was mounted on a transwell insert. Beneath the retina was an aqueous solution. Two retinal holes were made using needle punctures. One of the two retinal holes was covered with HA. Perfluoro-n-octane (PFO) was added above the retina incrementally using a syringe pump. The height of PFO required to cause the migration of PFO through the retinal holes was measured. The 'pendant drop' method was carried out to measure the interfacial tensions between the PFO and aqueous, and between PFO and four different concentrations of HA solution.
Results
A statistically higher PFO level was required to cause the migration of PFO through the retinal hole with HA coating than without HA coating (Tobit regression with p<0.05). The use of HA was associated with 2.39-fold increase in hydrostatic pressure before the collapse of the PFO interface at the retinal holes. The interfacial tension between PFO and HA solution with concentrations of 0.05%, 0.25%, 0.5% and 1% were 54.2±0.6, 55.3±0.6, 59.5±1.5 and 68.3±1.3 mN/m, respectively (mean±SD). The interfacial tension between PFO and aqueous with 1% HA coating (68.3±1.3 mN/m) was significantly higher than that without (37.4±3.4 mN/m) (p<0.05).
Conclusions
The interfacial tension between HA and PFO is higher than that between aqueous and PFO. This is a plausible physical explanation of how the 'soft shell' technique might work to prevent subretinal migration of PFCL.