Sepsis, a disease of divergent pro- and anti-inflammatory-mediated pathways, has a high prevalence of morbidity and mortality, yet an understanding of potential unifying mediators between these pathways that may improve clinical outcomes is largely unclear. IL-10 has classically been designated an immunosuppressive cytokine, although recent data suggest that under certain conditions IL-10 can be immune stimulatory. We sought to further investigate the effect of IL-10 on innate and adaptive immunity in an in vitro human observational cohort study in patients with sepsis via modulation of IL-10 on IFN-γ production by T cells and TNF-α production and HLA-DR expression by monocytes. These results were compared with critically ill nonseptic patients and healthy volunteers. ELISpot analysis was performed using PBMC fraction from patient whole-blood samples. Finally, to provide additional potential clinical relevance, we examined the effect of IL-10 on T cell IFN-γ production in an in vivo cecal ligation and puncture model of sepsis using C57 black/J6 female mice. We found that inhibition of IL-10 significantly increased both production of T cell IFN-γ and monocyte TNF-α, whereas addition of IL-10 increased T cell IFN-γ production but decreased monocyte production of TNF-α and HLA-DR expression. There was no significant effect of IL-10 on control cohorts. IL-10-treated septic mice demonstrated increased IFN-γ production in splenocytes. Thus, IL-10 demonstrates both pro- and anti-inflammatory effects in the septic microenvironment, which is likely cell and context dependent. Further elucidation of relevant signaling pathways may direct future therapeutic targets.
SOCIETY OF CRITICAL CARE MEDICINE 34TH CRITICAL CARE CONGRESS PHOENIX, ARIZONA, USA JANUARY 15-19, 2005: Oral Presentation: Basic Science: Immunology and Cell Signalling
ABSTRACT Background The inability to evaluate host immunity in a rapid quantitative manner in patients with sepsis has severely hampered development of novel immune therapies. The ELISpot assay is a functional bioassay that measures the number of cytokine-secreting cells and the relative amount of cytokine produced at the single-cell level. A key advantage of ELISpot is its excellent dynamic range enabling a more precise quantifiable assessment of host immunity. Herein, we tested the hypothesis on whether the ELISpot assay can detect dynamic changes in both innate and adaptive immunity as they often occur during sepsis. We also tested whether ELISpot could detect the effect of immune drug therapies to modulate innate and adaptive immunity. Methods Mice were made septic using sublethal cecal ligation and puncture (CLP). Blood and spleens were harvested serially and ex vivo IFN-γ and TNF-α production were compared by ELISpot and ELISA. The capability of ELISpot to detect changes in innate and adaptive immunity due to in vivo immune therapy with dexamethasone, IL-7, and arginine was also evaluated. Results ELISpot confirmed a decreased innate and adaptive immunity responsiveness during sepsis progression. More importantly, ELISpot was also able to detect changes in adaptive and innate immunity in response to immune-modulatory reagents, for example dexamethasone, arginine, and IL-7 in a readily quantifiable manner, as predicted by the reagents known mechanisms of action. ELISpot and ELISA results tended to parallel one another although some differences were noted. Conclusion ELISpot offers a unique capability to assess the functional status of both adaptive and innate immunity over time. The results presented herein demonstrate that ELISpot can also be used to detect and follow the in vivo effects of drugs to ameliorate sepsis-induced immune dysfunction. This capability would be a major advance in guiding new immune therapies in sepsis.