Phytoextraction is an environmentally acceptable and inexpensive technique for mine tailing rehabilitation that uses metallophyte plants. These plants reduce the soil trace metal contents to environmentally acceptable levels by accumulating trace metals. Recently, whether more trace metals can be removed by species-rich communities of these plants received great attention, as species richness has been reported having positive effects on ecosystem functions. However, how the species richness affects trace metals removal of plant communities of mine tailing is rarely known.We examined the effects of species richness on soil trace metal removal in both natural and experimental plant communities. The root lengths and stem heights of each plant species were measured in order to calculate the functional diversity indices. Our results showed that trace metal (Cu, Cd, Pb and Zn) concentrations in mine tailing soil declined as species richness increased in both the natural and experimental plant communities. Species richness, rather than functional diversity, positively affected the mineralomass of the experimental plant communities. The intensity of plant-plant facilitation increased with the species richness of experimental communities. Due to the incremental role of plant-plant facilitation, most of the species had higher biomasses, higher trace metal concentrations in their plant tissues and lower malondialdehyde concentrations in their leaves. Consequently, the positive effects of species richness on mineralomass were mostly attributable to facilitation among plants.Our results provide clear evidence that, due to plant-plant facilitation, species richness positively affects the removal of trace metals from mine tailing soil through phytoextraction and provides further information on diversity conservation and environmental remediation in a mine tailing environment.
Soil microbial communities, key players of many crucial ecosystem functions, are susceptible to environmental disturbances, which might cause the loss of microbial diversity and functions. However, few ecological concepts and practices have been developed for rescuing stressed soil microbial communities. Here, we manipulated an experiment with or without arbuscular mycorrhizal fungi (AMF) inoculation and at three levels (one, three and six species) of plant diversity to disentangle how the AMF and vegetation rescue soil nitrogen (N) -cycling microbial loop from simulated degraded soil ecosystem. Our results showed that AMF inoculation improved the restoration of soil N-cycling microbial communities. This improved restoration was related to the role of AMF in enhancing interactions within the N-cycling microbial loop. Furthermore, increased plant diversity strengthened the role of AMF in rescuing N-cycling microbial communities. Our findings provide novel insights into the roles of AMF and plant diversity in facilitating the rescue of microbial communities in degraded terrestrial ecosystems.