The present study introduces a progressive fatigue damage model within a multiscale framework by incorporating a Simplified Unit Cell Micromechanical model into a Finite Element program. The use of micromechanics will allow the study of damage at the micro-scale which can therefore identify modes of failure in each of the composite’s constituents, separately. The use of finite element method at the macro-scale enables the model to capture the geometric complexities including regions of stress concentration, which expedites the failure of the material. Damage progression is modeled through the degradation of the material property corresponding to the failure mode detected by the micromechanical model. The results of the model are in good agreement with the experimental data for both unidirectional and multidirectional laminates. The present approach is capable of predicting the fatigue life of composite laminates of any arbitrary geometry and lay-up configuration with minimum dependence on empirical parameters.
Hip resurfacing technique is a conservative arthroplasty used in the young patient in which the femoral head is reshaped to accept metal cap with small guide stem. In the present investigation, a hybrid composite-metal resurfacing implant is proposed. The cup is made of carbon fiber/polyamide 12 (CF/PA12) covered with a thin layer of cobalt chrome (Co-Cr). Finite element (FE) method was applied to analyze and compare the biomechanical performances of the hybrid hip resurfacing (HHR) and the conventional Birmingham (BHR). Results of the finite element analysis showed that the composite implant leads to an increase in stresses in the cancellous bone by more than 15% than BHR, indicating a lower potential for stress shielding and bone fracture and higher potential for bone apposition with the HHR.
Ultra high molecular weight polyethylene (UHMWPE) is a material commonly used in total hip and knee joint replacements. Numerous studies have assessed the effect of its viscoelastic properties on phenomena such as creep, stress relaxation, and tensile stress. However, these investigations either use the complex 3D geometries of total hip and knee replacements or UHMWPE test objects on their own. No studies have directly measured the effect of vertical load application speed on the contact mechanics of a metal sphere indenting UHMWPE. To this end, a metal ball was used to apply vertical force to a series of UHMWPE flat plate specimens over a wide range of loading speeds, namely, 1, 20, 40, 60, 80, 100, and 120 mm/min. Pressure sensitive Fujifilm was placed at the interface to measure contact area. Experimental results showed that maximum contact force ranged from 3596 to 4520 N and was logarithmically related (R(2)=0.96) to loading speed. Average contact area ranged from 76.5 to 79.9 mm(2) and was linearly related (R(2)=0.56) to loading speed. Average contact stress ranged from 45.1 to 58.2 MPa and was logarithmically related (R(2)=0.95) to loading speed. All UHMWPE specimens displayed a circular area of permanent surface damage, which did not disappear with time. This study has practical implications for understanding the contact mechanics of hip and knee replacements for a variety of activities of daily living.
Natural fibre-reinforced composites (NFRC) are attracting more and more attention as they are low-cost, environmentally friendly, and lightweight alternatives compared to composites made of synthetic fibres. Composites made of flax/epoxy are one of the typical NFRCs which may have wide applications such as automotive, electronics, and sporting goods. To increase the mechanical and hygrothermal performance of the flax/epoxy laminate, layers of glass/epoxy are used to create a glass/flax composite. However, the conventional drilling method of this glass/flax laminate results in poor hole quality and the damage mechanisms in drilling have yet to be fully understood. Hence, this study systematically investigated the hole quality and drilling damage mechanisms via various drilling processes, including conventional dry drilling with and without backup support, cryogenic drilling, and hybrid drilling combining both the backup support and the cryogenic conditions. The thrust force, delamination, surface roughness and topography of the hole were investigated. Moreover, Micro-computed tomography (Micro-CT) has been utilized for the detection of internal defects. Delamination was systematically classified and analysed according to their shape and distribution. Furthermore, this investigation precisely located the depth-wise position of delamination. Comparative analyses of various drilling conditions revealed that hybrid drilling surpasses alternative methods in reduced delamination and improved surface roughness.
Background: The bone loss associated with revision surgery or pathology has been the impetus for developing modular revision total hip prostheses. Few studies have assessed these modular implants quantitatively from a mechanical standpoint.<div>Methods: Three-dimensional finite element (FE) models were developed to mimic a hip implant alone (Construct A) and a hip implant-femur configuration (Construct B). Bonded contact was assumed for all interfaces to simulate long-term bony on growth and stability. The hip implants modeled were a Modular stem having two interlocking parts (Zimmer Modular Revision Hip System, Zimmer, Warsaw, IN, USA) and a Monoblock stem made from a single piece of material (Stryker Restoration HA Hip System, Stryker, Mahwah, NJ, USA). Axial loads of 700 and 2000 N were applied to Construct A and 2000 N to Construct B models. Stiffness, strain, and stress were computed. Mechanical tests using axial loads were used for Construct A to validate the FE model. Strain gages were placed along the medial and lateral side of the hip implants at 8 locations to measure axial strain distribution.</div><div>Results: There was approximately a 3% average difference between FE and experimental strains for Construct A at all locations for the Modular implant and in the proximal region for the Monoblock implant. FE results for Construct B showed that both implants carried the majority (Modular, 76%; Monoblock, 66%) of the 2000 N load relative to the femur. FE analysis and experiments demonstrated that the Modular implant was 3 to 4.5 times mechanically stiffer than the Monoblock due primarily to geometric differences.</div><div>Conclusions: This study provides mechanical characteristics of revision hip implants at sub-clinical axial loads as an initial predictor of potential failure.</div>