Even though climate change is having an increasing impact on tea plants, systematic reviews on the impact of climate change on the tea system are scarce. This review was undertaken to assess and synthesize the knowledge around the impacts of current and future climate on yield, quality, and climate suitability for tea; the historical roots and the most influential papers on the aforementioned topics; and the key adaptation and mitigation strategies that are practiced in tea fields. Our findings show that a large number of studies have focused on the impact of climate change on tea quality, followed by tea yield, while a smaller number of studies have concentrated on climate suitability. Three pronounced reference peaks found in Reference Publication Year Spectroscopy (RYPS) represent the most significant papers associated with the yield, quality, and climate suitability for tea. Tea yield increases with elevated CO2 levels, but this increment could be substantially affected by an increasing temperature. Other climatic factors are uneven rainfall, extreme weather events, and climate-driven abiotic stressors. An altered climate presents both advantages and disadvantages for tea quality due to the uncertainty of the concentrations of biochemicals in tea leaves. Climate change creates losses, gains, and shifts of climate suitability for tea habitats. Further studies are required in order to fill the knowledge gaps identified through the present review, such as an investigation of the interaction between the tea plant and multiple environmental factors that mimic real-world conditions and then studies on its impact on the tea system, as well as the design of ensemble modeling approaches to predict climate suitability for tea. Finally, we outline multifaceted and evidence-based adaptive and mitigation strategies that can be implemented in tea fields to alleviate the undesirable impacts of climate change.
Regenerative agriculture (RA) is an approach to farming pursued globally for sustaining agricultural production and improving ecosystem services and environmental benefits. However, the lack of a standardized definition and limited bioeconomic assessments hinder the understanding and application of RA more broadly. An initial systematic review revealed a wide range of definitions for regenerative agriculture, although it is generally understood as a framework consisting of principles, practices, or outcomes aimed at improving soil health, biodiversity, climate resilience, and ecosystem function. To address existing gaps, we propose a working definition that integrates socioeconomic outcomes and acknowledges the significance of local knowledge and context to complement established scientific knowledge. A second systematic review identified indicators, tools, and models for assessing biophysical and economic aspects of RA. Additionally, a third literature review aimed to identify the potential integration of advanced analytical methods into future assessments, including artificial intelligence and machine learning. Finally, as a case study, we developed a conceptual framework for the evaluation of the bioeconomic outcomes of RA in the mixed farming setting in Australia. This framework advocates a transdisciplinary approach, promoting a comprehensive assessment of RA outcomes through collaboration, integrated data, holistic frameworks, and stakeholder engagement. By defining, evaluating assessment methods, and proposing a pragmatic framework, this review advances the understanding of RA and guides future research to assess the fit of RA practices to defined contexts.