With the continuous application of antibacterial materials, various problems have emerged, such as expensive prices and the potential development of resistance. Cationic antibacterial agents, due to their high solubility, reactivity, and antibacterial properties, are considered as environmentally friendly and cost-effective antibacterial agents. In addition, the electrospinning technique is recognized as a versatile and high-efficiency method to produce nanofibers with multifunctional properties and adjustable structures. In this work, we prepared a series of nanofiber membranes by electrospinning technology using hexadecyl trimethyl ammonium Bromide (CTAB) and 5-Chloro-8-hydroxyquinoline (5-Cl8Q) as antibacterial agents and polylactic acid (PLA) as substrate. The antimicrobial performance of PLA/CTAB/5-Cl8Q was the highest among the prepared materials, which inhabited S. aureus and E. coli up to 99.9% and 95.9%, respectively, and the antibacterial properties were stable. In general, PLA/CTAB/5-Cl8Q has great development potential, and it can be applied to real life as a cost-effective, biodegradable and highly antibacterial material.
Understanding photocurrent conversion of layered double hydroxide (LDH) materials will be a key step in the future application of these materials to light-capturing molecular devices. In the present study, ultrathin nickel–iron layered double hydroxide/dye (NF-LDH/dye) Langmuir–Blodgett (LB) semiconductor films were prepared using an LB device and deposited on an indium tin oxide (ITO) substrate as a photoanode. The photoelectric conversion efficiency of the prepared LB semiconductor film materials was tested. A comparative experiment was performed to effectively explore the photoelectric conversion performances of the LB semiconductor film materials. Specifically, the NF-LDH cast film electrode, the dye cast film electrode, and an ultrathin composite LB film electrode were used as typical samples to explore photoelectric conversion performances. The electrochemical workstation was used to study the photocurrent density, linear scanning voltammetry curve, and electrochemical impedance spectroscopy of LB film electrodes with different layers. The results show that the film electrode cast by LDH alone or dye alone produces weak photocurrent. The photoelectric conversion efficiency of the LB film electrode is enhanced due to the different dyes' molecular structures and/or aggregations on the surface of LDH with various morphological patterns. The combined NF-LDH/dye composite LB film photoelectrode can generate a photocurrent that is 2–5 times stronger than the raw material, and the stable use efficiency is more than 92%. Present obtained composite LB films demonstrated a uniform morphology and good photoelectric conversion ability. This work provides a useful reference for the field of LDH semiconductor optoelectronic devices and solar cells.
Background: 4-nitrophenol (4-NP) is one of the pollutants in sewage and harmful to human health and the environment. Cu is a non-noble metal with catalytic reduction effect on nitro compounds, and.has the advantages of simple preparation, abundant reserves, and low price. Carbon nanotubes (CNT) are widely used for substrate due to their excellent mechanical stability and high surface area. In this study, a simple method to prepare CNT-Cu2O by controlling different reaction time was reported. The prepared nanocomposites were used to catalyze 4-NP. Methods: CNTs and CuCl2 solution were put into a beaker, and then ascorbic acid and NaOH were added while continuously stirring. The reaction was carried out for a sufficiently long period of time at 60°C. The prepared samples were dried in a vacuum at 50°C for 48 h after washing with ethyl alcohol and deionized water. Results: Nanostructures of these composites were characterized by scanning electron microscope and transmission electron microscopy techniques, and the results at a magnification of 200 nanometers showed that Cu2O was distributed on the surface of the CNTs. In addition, X-ray diffraction was performed to further confirm the formation of Cu2O nanoparticles. The results of ultraviolet spectrophotometry showed that the catalytic effect of the compound on 4-NP was obvious. Conclusions: CNTs acted as a huge template for loading Cu2O nanoparticles, which could improve the stability and cycle performance of Cu2O. The formation of nanoparticles was greatly affected by temperature and the appropriate concentration, showing great reducibility for the 4-NP reduction reaction.
Background Herbivore grazing is a multiple-component process that includes wounding, defoliation, and saliva deposition. Despite the extensive published research on mechanical wounding and defoliation, no analysis to identify the genes that specify defoliation and mechanical wounding has been performed. Moreover, the influence of the expression of these genes on plant regrowth after defoliation remains poorly understood. Results Seven cDNA libraries for RNA samples collected from stubble tissues that had been mechanically wounded or defoliated at 2, 6 and 24 h along with the control were sequenced using the Illumina/Solexa platform. A comparative transcriptomic analysis of the sequencing data was conducted. In total, 1,836 and 3,238 genes were detected with significant differential expression levels after wounding and defoliation, respectively, during one day. GO, KOG and pathway-based enrichment analyses were performed to determine and further understand the biological functions of those differentially expressed genes (DEGs). The results demonstrated that both wounding and defoliation activated the systemic synthesis of jasmonate (JA). However, defoliation specifically reduced the expression levels of ribosomal protein genes, cell division or cell expansion-related genes, and lignin biosynthesis genes and may have negatively affected plant growth. Further analysis revealed that the regrowth of elongating leaves was significantly retarded after defoliation at 6 h through the following 7 days of measurement, suggesting that the gene expression pattern and phenotype are consistent. Fifteen genes were selected, and their expression levels were confirmed by quantitative RT-PCR (qRT-PCR). Thirteen of them exhibited expression patterns consistent with the digital gene expression (DGE) data. Conclusions These sequencing datasets allowed us to elucidate the common and distinct mechanisms of plant responses to defoliation and wounding. Additionally, the distinct DEGs represent a valuable resource for novel gene discovery that may improve plant resistance to defoliation from various processes.
In this paper, new two-component supramolecular gels via 2,2-bis(4-carboxyphenyl)hexafluoropropane and N-(4-Aminobenzoyl)-L-glutamic acid diethyl ester have been prepared and tested in ethanol/water mixed solvents. Scanning electron microscope (SEM), Transmission electron microscope (TEM), powder X-ray diffraction (XRD), and Fourier Transform Infrared Spectroscopy (FT-IR) were measured to characterize the morphology and nanostructure of the prepared supramolecular gels. The obtained experimental data reveal that different mixed solvents ratios play an important role in regulating formation of nanostructures and the gelation behaviors. Favorable volume ratios in ethanol/water mixed solvents seemed suitable for the formation of supramolecular gels due to cooperation of multi-intermolecular weak forces. SEM and TEM observations indicate that the gelator molecules self-assemble into different aggregate nanostructures including sheets, rods, bar shape, and belt in different solvents ratios. The adsorption capacities of the as-obtained supramolecular gels on model dyes demonstrate good removal rates with the adsorption process according to rather pseudo-first-order model than pseudo-second-order model. The present research work show it potential to prepare new gel soft materials and promising candidates for wastewater treatment.
In response to the challenges of personal privacy protection in the dialogue models of the information era, this study introduces an innovative privacy-preserving dialogue model framework. This framework seamlessly incorporates Fully Homomorphic Encryption (FHE) technology with dynamic sparse attention (DSA) mechanisms, aiming to enhance the response efficiency and accuracy of dialogue systems without compromising user privacy. Experimental comparative analyses have confirmed the advantages of the proposed framework in terms of precision, recall, accuracy, and latency, with values of 0.92, 0.91, 0.92, and 15 ms, respectively. In particular, the newly proposed DSA module, while ensuring data security, significantly improves performance by up to 100 times compared to traditional multi-head attention mechanisms.