Sound billets were produced at BIAM with a twin-scanning spray forming facility. Microstructure and mechanical properties of In718 alloy produced with this technology were examined. Both tensile strength and stress rupture properties are excellent with the rupture life even doubled after received a direct aging heat treatment.
AlN-SiC-TiB2 ceramics were synthesized by self-propagating high temperature synthesis (SHS) and hot isostatic pressing (HIP) methods. The powder mixtures of Al, 6H-SiC and TiB2 were shaped by isostatic cool pressing method, and then combustion reaction was carried at the pressure of 100-200 MPa N2 by an ignitor. The solid solution of AlN and 2H-SiC in AlN-SiC-TiB2 ceramics was formed. The phase composition and microstructure were investigated by XRD and SEM. The mechanical properties of composite were measured as functions of composition. The maximum value of flexural strength and fracture toughness of composites were 430 MPa and 3.9 MPa⋅m1/2 respectively.
In this study, the phenomenon of gas removal behaviors in the melt pool and the flow behaviors of melt pool were observed using an in-situ X-ray imaging method. Based on the ultrasonic effects, a novel processing method was developed to reduce porosity and decrease diffusible hydrogen content in the deposited metal. The effects of ultrasonic output power on the size and frequency of gas bubble collapsing were studied. Results showed that with the assistance of ultrasonic, the gas bubble size were smaller and the collapsing frequency was significantly increased. The porosity decreased from 1.4% to 0.5% and the hydrogen diffusible content decreased from 24.5 to 18.6 ml/100 g when the ultrasonic power increased to 720 W. The possible hydrogen removal mechanism was proposed by two aspects including the microcosmic and macrocosmic scale.
Hydrogels are formed through the cross-linking of hydrophilic polymer chains within an aqueous microenvironment. A novel synthesis strategy, UV-initiated frontal polymerization to quickly synthesize bubble-free, self-propagating hydrogel anticorrosive coatings in aqueous conditions, was presented, in which the self-propagating polymerization rate reached 16.7 mm min–1. SEM, AFM, FTIR, EIS, IC, XPS, and ultra-depth-of-field microscopy were used to characterize the surface morphology and anti-corrosion properties of the hydrogel coating. The addition of nano-SiO2 formed dense hydrogen bonds, and the stability of the three-dimensional network was enhanced. Underwater, the hydrogel coating could physically block corrosive media from reaching steel surfaces, and it was 75% effective at blocking chloride ions after 7 days under osmotic pressure. In addition, 1,2,4-triazole accumulated on the steel surface, and then the active anti-corrosion function took effect. This paper provides the basis for the in situ synthesis of hydrogel anticorrosive coatings on the surface of mild steel in a wet or underwater state.