Native starches exhibit some technological drawbacks in industrial food applications; however, modification can remedy the lack of functionality. This study optimized the preparation of cationic, acetylated, and cationic-acetylated glutinous rice starch using response surface methodology. Subsequently, physicochemical properties were analyzed. Static rheological analysis revealed the pseudoplastic behavior of all samples. Dynamic rheological analysis revealed that all starches showed weak elastic gel structure. Modification dramatically improved freeze-thaw stability. For swelling power, solubility, and paste transparency, cationization (cationic and dual-modified starches) showed excellent performance. The SEM image showed that cationization and dual modification changed the morphology of starch granule, while acetylation had little effect. Overall, single cationization, and dual modification have more advantages than single acetylation modification in performance improvement. This provides the theoretical basis for the preparation of modified glutinous rice starch and expands the application of glutinous rice starch in the food industry, such as stabilizers and food packaging.
To reduce the adverse effects of bran on whole wheat flour products. In this study, seven reconstituted whole wheat flours were prepared and used to determine the effects of microwave and steam treatment on bran. We aimed to understand the effect of modification treatment on the properties of reconstituted whole wheat flour and dough. Treatment with whole wheat flour had a significant impact on the color, solubility, and swelling. As the cooking time increased, the initial temperature (To), peak temperature (Tp), and final temperature (Tc) of pasting and enthalpy (Hp) decreased. The combination of microwave and steam modification increased water absorption and stabilization time, leading to improved fermentation performance and cooking stability of the dough. The modified whole wheat flour and dough exhibited a significant decrease in crystallinity, possibly due to the degradation of the crystalline and amorphous regions of the starch granules during heat treatment. Upon modification treatment, the spiral β-turn structure was transformed into an irregular curled and β-sheet structure, and the β-sheet ratio increased significantly (p < 0.05). The modification of bran through microwave treatment (700 W for 30 s) followed by steam treatment (10 min) enhanced the processing performance of reconstituted whole wheat flour, offering substantial potential for the development of novel products and the optimization of industrial production efficiency.
In order to improve the nutritional value and reduce starch the digestibility of black soybean cookies, superfine black soybean flour was modified by heat-moisture treatment (HMT). The physicochemical properties, structure analysis of the flour samples and corresponding dough, and nutritional, physical, and textural properties of the cookies were investigated. After HMT, the water and lactic acid retention capacity and the oil binding capacity of mix powder dramatically increased, being almost twice the value of the untreated sample. HMT increased gelatinization temperature by about 10 °C but decreased gelatinization enthalpy. HMT had no apparent effect on the morphology and size of granules, but some cracks and pores appeared on the HMT-mix powder granules and corresponding dough. Fourier transform infrared spectroscopy analysis showed that the ordered structure of dough was unaffected during HMT. After HMT, the thickness, density, and baking loss of the cookies increased, and the spread ratio decreased. HMT dramatically increased the chemical score of cookies from 12.35% in mix powder cookies to 19.64% in HMT-mix powder cookies. HMT decreased the rapidly digestible starch content, while the slowly digestible starch increased from 45.97% in mix powder cookies to 49.31% in HMT-mix powder cookies, and RS increased from 21.64% to 26.87%. Overall, HMT did not have a negative effect on the processing properties and microstructure and secondary structure of the dough, or the physical properties and quality of the cookies, but significantly improved the nutritional properties and decreased the starch digestibility of the cookies.
In order to enrich the cookies' nutrition, black soybean was used to develop cookies, and the effect of its particle size on the characteristics of cookies was analysed. The results showed that the chemical score of black soybean cookies (12.02–13.24) was significantly greater than that of wheat flour cookies (9.14), which was significant for improving cookies' nutrition. The cookies thickness decreased when the particle size of black soybean flour decreased, but the spread ratio increased. The addition of black soybean flour greatly decreased the lightness of the cookie from 74.79 to 51.32. The decrease in particle size affected texture of cookies, especially for hardness and fracturability, they increased from 12.22 to 13.86 N, and decreased from 1.26 to 1.02 g, respectively. The addition of black soybean remarkably increased the slowly digestible and resistant starch, especially for cookies made from coarse black soybean flour, up to 50.22% and 26.10%, respectively. The black soybean flour enhanced the binding force of free water in cookies system, giving cookies a higher crispness. Based on physicochemical properties and nutrition analysis, using black soybean flour to develop cookies is feasible in industrial practice. And from sensory analysis, superfine black soybean flour was preferred for cookies production.
This experiment was to evaluate the effect of dietary resveratrol (Res) supplementation (0, 400 mg/kg) on growth performance, meat quality, and muscle anaerobic glycolysis and antioxidant capacity of transported broilers. A total of 360 21-day-old male Cobb broilers was randomly allotted to 2 dietary treatments (Res-free group and Res group) with 12 replicates of 15 birds each. On the morning of d 42, after a 9-hour fast, 24 birds (2 birds of each replicate) were selected from the Res-free group and then equally placed into 2 crates, and the other 12 birds (one bird of each replicate) were selected from the Res group and then placed into the other crate. All birds in the 3 crates were transported according to the following protocols: 0-hour transport of birds in the Res-free group (control group), 3-hour transport of birds in the Res-free group (T group), and 3-hour transport of birds in the Res group (T + Res group). The results showed that Res not only improved feed conversion ratio (P < 0.05) but also tended to improve birds' final body weight (P < 0.10). In the Res-free group, a 3-hour transport increased serum corticosterone concentration, muscle malondialdehyde (MDA) and lactate contents, and muscle lactate dehydrogenase (LDH) activity, while it decreased muscle glycogen content, total superoxide dismutase (T-SOD), and glutathione peroxidase (GSH-PX) activities (P < 0.05), which induced decreased breast meat quality (lower pH24h and higher drip loss and L*24 h, P < 0.05). Nevertheless, compared with the T group, Res increased muscle glycogen content and T-SOD and GSH-PX activities (P < 0.05 or P < 0.10), while it decreased muscle MDA content and LDH activity (P < 0.05), which is beneficial to the meat quality maintenance of transported broilers (lower drip loss, L*24 h, and higher pH24h, P < 0.05 or P < 0.10). This study provides the first evidence that dietary resveratrol supplementation prevents transport-stress-impaired meat quality of broilers, possibly through decreasing the muscle anaerobic glycolysis metabolism and improving the muscle antioxidant capacity.