Screening suitable allelopathic crops and crop genotypes that are competitive with weeds can be a sustainable weed control strategy to reduce the massive use of herbicides. In this study, three accessions of common buckwheat Fagopyrum esculentum Moench. (Gema, Kora, and Eva) and one of Tartary buckwheat Fagopyrum tataricum Gaertn. (PI481671) were screened against the germination and growth of the herbicide-resistant weeds Lolium rigidum Gaud. and Portulaca oleracea L. The chemical profile of the four buckwheat accessions was characterised in their shoots, roots, and root exudates in order to know more about their ability to sustainably manage weeds and the relation of this ability with the polyphenol accumulation and exudation from buckwheat plants. Our results show that different buckwheat genotypes may have different capacities to produce and exude several types of specialized metabolites, which lead to a wide range of allelopathic and defence functions in the agroecosystem to sustainably manage the growing weeds in their vicinity. The ability of the different buckwheat accessions to suppress weeds was accession-dependent without differences between species, as the common (Eva, Gema, and Kora) and Tartary (PI481671) accessions did not show any species-dependent pattern in their ability to control the germination and growth of the target weeds. Finally, Gema appeared to be the most promising accession to be evaluated in organic farming due to its capacity to sustainably control target weeds while stimulating the root growth of buckwheat plants.
Screening suitable allelopathic crops and crop genotypes that are competitive with weeds can be a sustainable weed control strategy to reduce the massive use of herbicides. In this study, three accessions of common buckwheat Fagopyrum esculentum Moench. (Gema, Kora, and Eva) and one of Tartary buckwheat Fagopyrum tataricum Gaertn. (PI481671) were screened against the germination and growth of the herbicide-resistant weeds Lolium rigidum Gaud. and Portulaca oleracea L. The chemical profile of the four buckwheat accessions was characterised in their shoots, roots, and root exudates in order to know more about their ability to sustainably manage weeds and the relation of this ability with the polyphenol accumulation and exudation from buckwheat plants. Our results show that different buckwheat genotypes may have different capacities to produce and exude several types of specialized metabolites, which lead to a wide range of allelopathic and defence functions in the agroecosystem to sustainably manage the growing weeds in their vicinity. The ability of the different buckwheat accessions to suppress weeds was accession-dependent without differences between species, as the common (Eva, Gema, and Kora) and Tartary (PI481671) accessions did not show any species-dependent pattern in their ability to control the germination and growth of the target weeds. Finally, Gema appeared to be the most promising accession to be evaluated in organic farming due to its capacity to sustainably control target weeds while stimulating the root growth of buckwheat plants.
The study aims to explore the natural variation in the metabolome of different populations of the invasive plant Carpobrotus from different genetic clusters and geographical origins to enhance our comprehension of its involvement in the adaptation process and phenotypic diversity. The metabolomic profile of shoots was analysed in four populations from two different genetic clusters (Cluster A: Cádiz and A Lanzada; Cluster B: La Marina and Samil) and two different biogeographical regions in Spain (Atlantic: Samil and A Lanzada; Mediterranean: Cádiz and La Marina), collected in the field and subsequently grown in the greenhouse. In addition, climatic, and physiological parameters were analysed. The Mediterranean populations (Cádiz and La Marina) showed lower initial weight and length measurements in morphological parameters than the Atlantic populations. On the contrary, only root parameters showed significant differences in growth parameters among populations. The analysis of ion levels revealed a consistent pattern of higher concentrations in shoots compared to roots, with significant differences among populations, particularly in sodium (Na
Screening suitable allelopathic crops and crop genotypes that are competitive with weeds can be a sustainable weed control strategy to reduce the massive use of herbicides. In this study, three accessions of common buckwheat Fagopyrum esculentum Moench. (Gema, Kora, and Eva) and one of Tartary buckwheat Fagopyrum tataricum Gaertn. (PI481671) were screened against the germination and growth of the herbicide-resistant weeds Lolium rigidum Gaud. and Portulaca oleracea L. The chemical profile of the four buckwheat accessions was characterised in their shoots, roots, and root exudates in order to know more about their ability to sustainably manage weeds and the relation of this ability with the polyphenol accumulation and exudation from buckwheat plants. Our results show that different buckwheat genotypes may have different capacities to produce and exude several types of specialized metabolites, which lead to a wide range of allelopathic and defence functions in the agroecosystem to sustainably manage the growing weeds in their vicinity. The ability of the different buckwheat accessions to suppress weeds was accession-dependent without differences between species, as the common (Eva, Gema, and Kora) and Tartary (PI481671) accessions did not show any species-dependent pattern in their ability to control the germination and growth of the target weeds. Finally, Gema appeared to be the most promising accession to be evaluated in organic farming due to its capacity to sustainably control target weeds while stimulating the root growth of buckwheat plants.
Download This Paper Open PDF in Browser Add Paper to My Library Share: Permalink Using these links will ensure access to this page indefinitely Copy URL Copy DOI
The sesquiterpene farnesene and the monoterpene citral are phytotoxic natural compounds characterized by a high similarity in macroscopic effects, suggesting an equal or similar mechanism of action when assayed at IC50 concentration. In the present study, a short-time experiment (24 and 48 h) using an imaging spectrofluorometer allowed us to monitor the in-vivo effects of the two molecules, highlighting that both terpenoids were similarly affecting all PSII parameters, even when the effects of citral were quicker in appearing than those of farnesene. The multivariate, univariate, and pathway analyses, carried out on untargeted-metabolomic data, confirmed a clear separation of the plant metabolome in response to the two treatments, whereas similarity in the affected pathways was observed. The main metabolites affected were amino acids and polyamine, which significantly accumulated in response to both treatments. On the contrary, a reduction in sugar content (i.e. glucose and sucrose) was observed. Finally, the in-silico studies demonstrated a similar mechanism of action for both molecules by interacting with DNA binding proteins, although differences concerning the affinity with the proteins with which they could potentially interact were also highlighted. Despite the similarities in macroscopic effects of these two molecules, the metabolomic and in-silico data suggest that both terpenoids share a similar but not equal mechanism of action and that the similar effects observed on the photosynthetic machinery are more imputable to a side effect of molecules-induced oxidative stress.