We developed both membrane potential nanosensors (MPNs) and voltage sensing dyes (VSDs), and quantitative optical measurement tools to measure membrane potential (MP) at the level of a single bacterial cell, with voltage resolution of ~10 mV changes. Our approach relied on (i) novel MPNs and novel VSDs that measures MPs via fluorescence lifetime; (ii) a quantitative approach to fluorescence lifetime imaging microscopy (FLIM) data based on a novel time-resolved camera and phasor analysis. We demonstrate MP measurements over time for single bacterial cells.
Recent reports of self-frequency detuning in a passive phase conjugate mirror (PPCM) have led to some speculations concerning the underlying mechanism for this nondegenerate oscillation. We have developed a theory 1 of self-frequency detuning in various photorefractive oscillators and report on an experimental study 2 using BaTiO 3 in the semilinear PPCM and ring PPCM configurations. The detuning is shown to depend on the dc electric field on the crystal, optical phases in the oscillator cavity, and light intensity in the crystal. Our results also indicate the existence of an internal electric field in the crystal.
The mechanisms of exciton generation and recombination in semiconductor nanocrystals are crucial to the understanding of their photophysics and for their application in nearly all fields. While many studies have been focused on type-I heterojunction nanocrystals, the photophysics of type-II nanorods, where the hole is located in the core and the electron is located in the shell of the nanorod, remain largely unexplored. In this work, by scanning single nanorods through the focal spot of radially and azimuthally polarized laser beams and by comparing the measured excitation patterns with a theoretical model, we determine the dimensionality of the excitation transition dipole of single type-II nanorods. Additionally, by recording defocused patterns of the emission of the same particles, we measure their emission transition dipoles. The combination of these techniques allows us to unambiguously deduce the dimensionality and orientation of both excitation and emission transition dipoles of single type-II semiconductor nanorods. The results show that in contrast to previously studied quantum emitters, the particles possess a 3D degenerate excitation and a fixed linear emission transition dipole.
CdSe/CdS/ZnS nanorods (NRs) of three aspect ratios were coated with phytochelatin-related peptides and studied using fluorescence correlation spectroscopy (FCS). Theoretical predictions of the NRs' rotational diffusion contribution to the correlation curves were experimentally confirmed. We monitored rotational and translational diffusion of NRs and extracted hydrodynamic radii from the extracted diffusion constants. Translational and rotational diffusion constants (D(trans) and D(rot)) for NRs were in good agreement with Tirado and Garcia de la Torre's as well as with Broersma's theories when accounting for the ligand dimensions. NRs fall in the size range where rotational diffusion can be monitored with higher sensitivity than translational diffusion due to a steeper length dependence, D(rot) approximately L(-)(3) versus D(trans) approximately L(-)(1). By titrating peptide-coated NRs with bovine serum albumin, we monitored (nonspecific) binding through rotational diffusion and showed that D(rot) is an advantageous observable for monitoring binding. Monitoring rotational diffusion of bioconjugated NRs using FCS might prove to be useful for observing binding and conformational dynamics in biological systems.
The N- and C-terminal six-helix bundles of lactose permease (LacY) form a large internal cavity open on the cytoplasmic side and closed on the periplasmic side with a single sugar-binding site at the apex of the cavity near the middle of the molecule. During sugar/H(+) symport, an outward-facing cavity is thought to open with closing of the inward-facing cavity so that the sugar-binding site is alternately accessible to either face of the membrane. In this communication, single-molecule fluorescence (Förster) resonance energy transfer is used to test this model with wild-type LacY and a conformationally restricted mutant. Pairs of Cys residues at the ends of two helices on the cytoplasmic or periplasmic sides of wild-type LacY and the mutant were labeled with appropriate donor and acceptor fluorophores, single-molecule fluorescence resonance energy transfer was determined in the absence and presence of sugar, and distance changes were calculated. With wild-type LacY, binding of a galactopyranoside, but not a glucopyranoside, results in a decrease in distance on the cytoplasmic side and an increase in distance on the periplasmic side. In contrast, with the mutant, a more pronounced decrease in distance and in distance distribution is observed on the cytoplasmic side, but there is no change on the periplasmic side. The results are consistent with the alternating access model and indicate that the defect in the mutant is due to impaired ligand-induced flexibility on the periplasmic side.
We report on an experimental study of the self-frequency detuning in wave mixing oscillators with the photorefractive barium titanate crystal. We show its dependence on a dc electric field on the crystal, optical phases in the oscillator cavity, and light intensity in the crystal. This resolves many aspects of previously observed and unexplained self-frequency detuning effects with similar oscillators and indicates the existence of an internal electric field in the mixing crystal.
Using single-molecule fluorescence resonance energy transfer, we have defined bacterial RNA polymerase (RNAP) clamp conformation at each step in transcription initiation and elongation. We find that the clamp predominantly is open in free RNAP and early intermediates in transcription initiation but closes upon formation of a catalytically competent transcription initiation complex and remains closed during initial transcription and transcription elongation. We show that four RNAP inhibitors interfere with clamp opening. We propose that clamp opening allows DNA to be loaded into and unwound in the RNAP active-center cleft, that DNA loading and unwinding trigger clamp closure, and that clamp closure accounts for the high stability of initiation complexes and the high stability and processivity of elongation complexes.