Overlap of hypo-and hypermethylated CpG sites with published gene sets (GSEA). This table summarizes an overlap of significantly hyper- and hypomethylated CpG sites between ΔpBK-ITIH5 and ΔpBK-mock clones with gene set data bases. (XLS 72 kb)
Secreted frizzled related protein 3 (SFRP3) contains a cysteine-rich domain (CRD) that shares homology with Frizzled CRD and regulates WNT signaling. Independent studies showed epigenetic silencing of SFRP3 in melanoma and hepatocellular carcinoma. Moreover, a tumor suppressive function of SFRP3 was shown in androgen-independent prostate and gastric cancer cells. The current study is the first to investigate SFRP3 expression and its potential clinical impact on non-small cell lung carcinoma (NSCLC). WNT signaling components present on NSCLC subtypes were preliminary elucidated by expression data of The Cancer Genome Atlas (TCGA). We identified a distinct expression signature of relevant WNT signaling components that differ between adenocarcinoma (LUAD) and squamous cell carcinoma (LUSC). Of interest, canonical WNT signaling is predominant in LUAD samples and non-canonical WNT signaling is predominant in LUSC. In line, high SFRP3 expression resulted in beneficial clinical outcome for LUAD but not for LUSC patients. Furthermore, SFRP3 mRNA expression was significantly decreased in NSCLC tissue compared to normal lung samples. TCGA data verified the reduction of SFRP3 in LUAD and LUSC patients. Moreover, DNA hypermethylation of SFRP3 was evaluated in the TCGA methylation dataset resulting in epigenetic inactivation of SFRP3 expression in LUAD, but not in LUSC, and was validated by pyrosequencing of our NSCLC tissue cohort and in vitro demethylation experiments. Immunohistochemistry confirmed SFRP3 protein downregulation in primary NSCLC and indicated abundant expression in normal lung tissue. Two adenocarcinoma gain-of-function models were used to analyze the functional impact of SFRP3 on cell proliferation and regulation of CyclinD1 expression in vitro. Our results indicate that SFRP3 acts as a novel putative tumor suppressor gene in adenocarcinoma of the lung possibly regulating canonical WNT signaling.
Inter-α-trypsin inhibitor heavy chain 5 (ITIH5) is supposed to be involved in extracellular matrix stability and thus may play a key role in the inhibition of tumor progression. The current study is the first to analyze in depth ITIH5 expression and DNA methylation, as well as its potential clinical impact in non-small-cell lung carcinoma (NSCLC). We examined ITIH5 mRNA expression in tumor and adjacent normal lung tissue specimens of NSCLC patients. In addition, methylation frequency of the ITIH5 promoter was investigated using methylation-specific PCR and pyrosequencing. Significance of our data was validated by independent data sets from The Cancer Genome Atlas and the Kaplan-Meier Plotter platform. Furthermore, ITIH5 protein expression was evaluated by immunohistochemistry utilizing a tissue microarray with 385 distinct lung tissue samples. Based on our tissue collections, ITIH5 mRNA expression was significantly decreased in NSCLC compared to normal lung tissue in line with an increased methylation frequency in lung cancer tissue. Independent TCGA data confirmed significant expression loss of ITIH5 in lung cancer concordant with ITIH5 promoter hypermethylation in NSCLC. Of interest, low ITIH5 mRNA expression was particularly found in the magnoid and squamoid ADC expression subtype, concordant with an unfavorable patients' outcome in squamoid as well as tobacco smoking ADC patients. In conclusion, ITIH5 may be a novel putative tumor suppressor gene in NSCLC with a potential molecular significance in the squamoid ADC subtype and further clinical impact for risk stratification of adenocarcinoma patients. In addition, ITIH5 may serve as a novel biomarker for prognosis of tobacco smoking ADC patients.
Inter-α-trypsin inhibitor heavy chain 5 (ITIH5) is supposed to be involved in extracellular matrix stability and thus may play a key role in the inhibition of tumor progression. The current study is the first to analyze in depth ITIH5 expression and DNA methylation, as well as its potential clinical impact in non-small-cell lung carcinoma (NSCLC). We examined ITIH5 mRNA expression in tumor and adjacent normal lung tissue specimens of NSCLC patients. In addition, methylation frequency of the ITIH5 promoter was investigated using methylation-specific PCR and pyrosequencing. Significance of our data was validated by independent data sets from The Cancer Genome Atlas and the Kaplan-Meier Plotter platform. Furthermore, ITIH5 protein expression was evaluated by immunohistochemistry utilizing a tissue microarray with 385 distinct lung tissue samples. Based on our tissue collections, ITIH5 mRNA expression was significantly decreased in NSCLC compared to normal lung tissue in line with an increased methylation frequency in lung cancer tissue. Independent TCGA data confirmed significant expression loss of ITIH5 in lung cancer concordant with ITIH5 promoter hypermethylation in NSCLC. Of interest, low ITIH5 mRNA expression was particularly found in the magnoid and squamoid ADC expression subtype, concordant with an unfavorable patients' outcome in squamoid as well as tobacco smoking ADC patients. In conclusion, ITIH5 may be a novel putative tumor suppressor gene in NSCLC with a potential molecular significance in the squamoid ADC subtype and further clinical impact for risk stratification of adenocarcinoma patients. In addition, ITIH5 may serve as a novel biomarker for prognosis of tobacco smoking ADC patients.
Abstract Genetic and epigenetic variation, together with transcriptional plasticity, contribute to intratumour heterogeneity 1 . The interplay of these biological processes and their respective contributions to tumour evolution remain unknown. Here we show that intratumour genetic ancestry only infrequently affects gene expression traits and subclonal evolution in colorectal cancer (CRC). Using spatially resolved paired whole-genome and transcriptome sequencing, we find that the majority of intratumour variation in gene expression is not strongly heritable but rather ‘plastic’. Somatic expression quantitative trait loci analysis identified a number of putative genetic controls of expression by cis -acting coding and non-coding mutations, the majority of which were clonal within a tumour, alongside frequent structural alterations. Consistently, computational inference on the spatial patterning of tumour phylogenies finds that a considerable proportion of CRCs did not show evidence of subclonal selection, with only a subset of putative genetic drivers associated with subclone expansions. Spatial intermixing of clones is common, with some tumours growing exponentially and others only at the periphery. Together, our data suggest that most genetic intratumour variation in CRC has no major phenotypic consequence and that transcriptional plasticity is, instead, widespread within a tumour.
Clinical diagnostic sequencing of circulating tumour DNA (ctDNA) is well advanced for adult patients, but application to paediatric cancer patients lags behind.