Abstract A current challenge in high‐throughput screening (HTS) of hydroxylation reactions by P450 is a fast and sensitive assay for regioselective hydroxylation against millions of mutants. We have developed a solid‐agar plate‐based HTS assay for screening ortho ‐specific hydroxylation of daidzein by sensing formaldehyde generated from the O‐dealkylation reaction. This method adopts a colorimetric dye, pararosaniline, which has previously been used as an aldehyde‐specific probe within cells. The rationale for this method lies in the fact that the hydroxylation activity at ortho ‐carbon position to COH correlates with a linear relationship to O‐dealkylation activity on chemically introduced methoxy group at the corresponding COH. As a model system, a 4′,7‐dihydroxyisoflavone (daidzein) hydroxylase (CYP102D1 F96V/M246I), which catalyzes hydroxylation at ortho positions of the daidzein A/B‐ring, was examined for O‐dealklyation activity, by using permethylated daidzein as a surrogate substrate. By using the developed indirect bishydroxylation screening assay, the correlation coefficient between O‐dealkylation and bishydroxylation activity for the template enzyme was 0.72. For further application of this assay, saturation mutants at A273/G274/T277 were examined by mutant screening with a permethylated daidzein analogue substrate (A‐ring inactivated in order to find enhanced 3′‐regioselectiviy). The whole‐cell biotransformation of daidzein by final screened mutant G1 (A273H/G274E/T277G) showed fourfold increased conversion yield, with 14.3 mg L −1 production titer and greatly increased 3′‐regioselectiviy (3′/6=11.8). These results show that there is a remarkably high correlation (both in vitro and in vivo), thus suggesting that this assay would be ideal for a primary HTS assay for P450 reactions.
The extent athletes go to enhance their performance goes beyond using prohibited substances and into the realm of prohibited gene therapy. Any genetic approach to improving athletic performance is called “gene doping” and is prohibited by the World Anti-Doping Agency. The development of a doping gene detection method is essential as there is currently no standard assay for gene doping validation. Recently, clustered regularly interspaced short palindromic repeats associated protein (Cas)-related assays have been used for nucleic acid detection in several fields. Furthermore, dCas9, a nuclease-deficient mutant of Cas9, can act as a sequence-specific DNA binding protein with a target-specific single guide RNA. Thus, we developed a dCas9-based high-throughput gene doping analysis for exogenous gene validation. The assay comprises two distinctive dCas9s, a magnetic bead immobilized capture dCas9 for exogenous gene isolation and a biotinylated dCas9 with streptavidin–polyHRP that enables rapid signal amplification. With this new assay, we succeeded in detecting the target gene in a concentration as low as 12.3 fM (1.23 amol) and up to 10 nM (1 nmol) in a whole blood sample within 1 h. This newly developed assay, which not only enables the direct detection of gene doping but also can successfully quantify the extent of gene doping, is a viable method for gene doping validation.
NdgR is an IclR-type transcription factor that regulates leucine biosynthesis and other metabolic pathways in Streptomyces coelicolor. Recent study revealed that NdgR is one of the regulatory targets of SigR, an oxidative stress response sigma factor, suggesting that the NdgR plays an important physiological role in response to environmental stresses. Although the regulatory functions of NdgR were partly characterized, determination of its regulon is required for better understanding of the transcriptional regulatory network related with the oxidative stress response.We determined genome-wide binding loci of NdgR by using chromatin immunoprecipitation coupled with sequencing (ChIP-seq) and explored its physiological roles. The ChIP-seq profiles revealed 19 direct binding loci with a 15-bp imperfect palindromic motif, including 34 genes in their transcription units. Most genes in branched-chain amino acid and cysteine biosynthesis pathways were involved in the NdgR regulon. We proved that ndgR is induced by SigR under the thiol oxidation, and that an ndgR mutant strain is sensitive to the thiol oxidizing agent, diamide. Through the expression test of NdgR and the target genes for NdgR under diamide treatment, regulatory motifs were suggested. Interestingly, NdgR constitutes two regulatory motifs, coherent and incoherent feed-forward loops (FFL), in order to control its regulon under the diamide treatment. Using the regulatory motifs, NdgR regulates cysteine biosynthesis in response to thiol oxidative stress, enabling cells to maintain sulfur assimilation with homeostasis under stress conditions.Our analysis revealed that NdgR is a global transcriptional regulator involved in the regulation of branched-chain amino acids biosynthesis and sulphur assimilation. The identification of the NdgR regulon broadens our knowledge regarding complex regulatory networks governing amino acid biosynthesis in the context of stress responses in S. coelicolor.