Aim To investigate the association between circulating anti‐dopamine D2 receptor (D2R) autoantibodies and the exacerbation of tics in children with chronic tic disorders (CTDs). Method One hundred and thirty‐seven children with CTDs (108 males, 29 females; mean age [SD] 10y 0mo [2y 7mo], range 4–16y) were recruited over 18 months. Patients were assessed at baseline, at tic exacerbation, and at 2 months after exacerbation. Serum anti‐D2R antibodies were evaluated using a cell‐based assay and blinded immunofluorescence microscopy scoring was performed by two raters. The association between visit type and presence of anti‐D2R antibodies was measured with McNemar’s test and repeated‐measure logistic regression models, adjusting for potential demographic and clinical confounders. Results At exacerbation, 11 (8%) participants became anti‐D2R‐positive (‘early peri‐exacerbation seroconverters’), and nine (6.6%) became anti‐D2R‐positive at post‐exacerbation (‘late peri‐exacerbation seroconverters’). The anti‐D2R antibodies were significantly associated with exacerbations when compared to baseline (McNemar’s odds ratio=11, p =0.003) and conditional logistic regression confirmed this association ( Z =3.49, p <0.001) after adjustment for demographic and clinical data and use of psychotropic drugs. Interpretation There is a potential association between immune mechanisms and the severity course of tics in adolescents with CTDs.
With the recent characterization of enzymes responsible for protein arginine methylation and demonstration that catabolic products of arginine methylation, such as asymmetric dimethylarginine (ADMA), are among the most powerful mechanisms of atherogenesis, developing endothelial dysfunction and cardiovascular complications in a variety of pathologic processes, the need for functional characterization of the methylation-demethylation processes becomes ever more urgent. Therefore, the aims of the present study were to refine the feedback regulation of protein arginine methylation using one of the heavily methylated proteins, an RNA-binding protein Sam68, as a prototype, to elucidate the relations between Sam68 methylation and tyrosine phosphorylation and the role of methylation in RNA binding and subcellular distribution, as well as the cellular consequences of reduced protein methylation. Screening pro-atherogenic substances known to induce endothelial dysfunction showed that ADMA did not affect the level of arginine methylation of Sam68, whereas peroxynitrite was a strong inhibitor of methylation. Adavanced glycation-modified collagen I, which accumulats in diabetes and induces formation of peroxynitrite and premature endothelial cell senescence, also inhibited arginine methylation of Sam68. When the level of arginine methylation of Sam68 was pharmacologically reduced, this did not affect its RNA binding or degree of tyrosine phosphorylation, but resulted in the predominantly nuclear hypomethylation pattern. Furthermore, protein hypomethylation resulted in the increased rate of apoptosis and premature senescence. This data may offer an additional explanation for the pro-apoptotic and senescence-accelerating action of peroxynitrite, a potent inhibitor of protein methylation.
Green spaces have been shown to be beneficial to humans, but quantifying these benefits is a challenge for epidemiology. In this health impact assessment study, we exploit satellites to estimate for the whole of Italy the number of deaths that could be prevented in the 49 million adult population by greening residential areas. The exposure was assessed by calculating the normalized difference vegetation index at 10-m resolution within a 300-m distance from homes in 7904 municipalities. In this study we estimate, by achieving nationwide the level of residential greenness currently reached by the 25% of the population, a total of 28,433 (95% confidence interval: 21,400–42,350) preventable deaths and 279,324 (210,247–415,980) preventable years of life lost in Italy in 2022, representing the 5% of the total mortality burden. More green means fewer deaths, thus strong action is needed to increase the amount and accessibility of green spaces in all human settlements. Green spaces are beneficial to humans. The authors estimate, by reaching across the whole of Italy the greenness currently achieved by the 25% of the population, a total of 28,433 annual preventable deaths, representing the 5% of all mortality burden.
Studies have analyzed the effects of industrial installations on the environment and human health in Taranto, Southern Italy. Literature documented associations between different variables and dementia mortality among both women and men. The present study aims to investigate the associations between sex, environment, age, disease duration, pandemic years, anti-dementia drugs, and death rate.
Primary and/or secondary injury of the renal microvascular endothelium is a common finding in various renal diseases. Besides well-known endothelial repair mechanisms, including endothelial cell (EC) proliferation and migration, homing of extrinsic cells such as endothelial progenitor cells (EPC) and hematopoietic stem cells (HSC) has been shown in various organs and may contribute to microvascular repair. However, these mechanisms have so far not been studied after selective microvascular injury in the kidney. The present study investigated the time course of EPC and HSC stimulation and homing following induction of selective EC injury in the mouse kidney along with various angiogenic factors potentially involved in EC repair and progenitor cell stimulation. Erythropoietin was used to stimulate progenitor cells in a therapeutic approach. We found that selective EC injury leads to a marked stimulation of EPCs, HSCs, and various angiogenic factors to orchestrate microvascular repair. Angiogenic factors started to increase as early as 30 min after disease induction. Progenitor cells could be first detected in the circulation and the spleen before they selectively homed to the diseased kidney. Injection of a high dose of erythropoietin 2 h after disease induction markedly attenuated vascular injury through nonhemodynamic mechanisms, possibly involving vascular endothelial growth factor release.
Cardiac surgery with cardiopulmonary bypass (CS/CPB) is associated with increased risk for postoperative complications causing substantial morbidity and mortality. To identify the molecular mechanisms underlying CS/CPB-induced pathophysiology we employed an integrative systems biology approach using the whole blood transcriptome as the sentinel organ.Total RNA was isolated and globin mRNA depleted from whole blood samples prospectively collected from 10 patients at time points prior (0), 2 and 24 hours following CS/CPB. Genome-wide transcriptional analysis revealed differential expression of 610 genes after CS/CPB (p<0.01). Among the 375 CS/CPB-upregulated genes, we found a gene-regulatory network consisting of 50 genes, reminiscent of activation of a coordinated genetic program triggered by CS/CPB. Intriguingly, the highly connected hub nodes of the identified network included key sensors of ischemia-reperfusion (HIF-1alpha and C/EBPbeta). Activation of this network initiated a concerted inflammatory response via upregulation of TLR-4/5, IL1R2/IL1RAP, IL6, IL18/IL18R1/IL18RAP, MMP9, HGF/HGFR, CalgranulinA/B, and coagulation factors F5/F12 among others. Differential regulation of 13 candidate genes including novel, not hitherto CS/CBP-associated genes, such as PTX3, PGK1 and Resistin, was confirmed using real-time quantitative RT-PCR. In support of the mRNA data, differential expression of MMP9, MIP1alpha and MIP1beta plasma proteins was further confirmed in 34 additional patients.Analysis of blood transcriptome uncovered critical signaling pathways governing the CS/CPB-induced pathophysiology. The molecular signaling underlying ischemia reperfusion and inflammatory response is highly intertwined and includes pro-inflammatory as well as cardioprotective elements. The herein identified candidate genes and pathways may provide promising prognostic biomarker and therapeutic targets.
Adiponectin, an abundant adipocyte-derived plasma protein that modulates vascular function in type 2 diabetes, has been shown to provide cytoprotection to both pancreatic and vascular systems in diabetes. Therefore, we examined whether up-regulation of heme oxygenase (HO)-1 ameliorates the levels of inflammatory cytokines and influences serum adiponectin in Zucker fat (ZF) rats. ZF rats displayed a decrease in both HO activity and HO-1 and HO-2 protein levels and an increase in tumor necrosis factor (TNF)-alpha and interleukin (IL)-6 compared with Zucker lean (ZL) rats. Treatment of ZF animals with 2 mg/kg cobalt protoporphyrin IX (CoPP) increased protein levels of HO-1 and HO activity, but HO-2 was unaffected. The increase in HO-1 was associated with a decrease in superoxide levels (p < 0.05) and an increase in plasma adiponectin (p < 0.005), compared with untreated ZF rats. CoPP treatment decreased visceral and s.c. fat content, and it reduced weight gain (p < 0.01). In addition, the inflammatory cytokines TNF-alpha and IL-6 were decreased (p < 0.04 and p < 0.008, respectively). Treatment of human bone marrow-derived adipocytes cultured with CoPP resulted in an increase in HO-1 and a decrease in superoxide levels. Up-regulation of HO-1 caused adipose remodeling, smaller adipocytes, and increased adiponectin secretion in the culture medium of human bone marrow-derived adipocytes. In summary, this study demonstrates that the antiobesity effect of HO-1 induction results in an increase in adiponectin secretion, in vivo and in vitro, a decrease in TNF-alpha and IL-6, and a reduction in weight gain. These findings highlight the pivotal role and symbiotic relationship of HO-1 and adiponectin in the modulation of the metabolic syndrome phenotype.