† OA here refers to a second carbon parameter (i.e.pH, DIC, or TA) that will make the sensor package capable of reflecting ocean acidification conditions.‡ This carbon observational system will be part of a cabled observatory node.§ This station is an
Chronic kidney disease of uncertain etiology (CKDu) is a leading cause of death of adults in Sri Lanka's dry region.We initiated the Kidney Progression Project (KiPP) to prospectively follow 292 persons with Chronic Kidney Disease Epidemiology Collaboration estimated glomerular filtration rate (eGFR) 20 to 60 ml/min per 1.73 m2 living in a CKDu endemic area. Using data from 3-year follow-up, we assessed kidney function decline (>30% from baseline eGFR), and the composite outcome of >30% eGFR decline, eGFR <15 ml/min or death, and explored the association of the 2 outcomes with baseline demographic, residential, and clinical parameters accounting for baseline eGFR.Median eGFR at enrollment was 28 ml/min among 71 women; 30 ml/min among 221 men; 91% to 99% had trace or no proteinuria during follow-up. At enrollment, median serum sodium, uric acid, and potassium were 143 mmol/l, 6.3 mg/dl, 4.5 meq/l, respectively among women; and 143 mmol/l, 6.9 mg/dl, 4.3 meq/l among men. Mean slope of eGFR decline was -0.5 (SD 4.9) ml/min/yr. In exploratory analyses, men with greater years of education and those living in northern region of the study area experienced lower likelihood of disease progression (hazard ratios [HR] 0.87 [0.77-0.98] per additional year and 0.33 [0.12-0.89] for northern versus other subregions, respectively). There was a suggestion that men drinking well water had higher likelihood and men living further away from reservoirs had lower likelihood of >30% decline in eGFR (HR 2.07 [0.95-4.49] for drinking well water versus not, and HR 0.58 [0.32-1.05] per kilometer distance, respectively).The overall rate of kidney function decline was slow in this CKDu cohort, similar to other nonalbuminuric CKD, and event rates were similar among men and women. Further etiologic investigations could focus on specific residence locale and water use.
2,4,6-Trinitrotoluene (TNT) has been used as a military explosive for over a hundred years. Contamination concerns have arisen as a result of manufacturing and use on a large scale; however, despite decades of work addressing TNT contamination in the environment, its fate in marine ecosystems is not fully resolved. Here we examine the cycling and fate of TNT in the coastal marine systems by spiking a marine mesocosm containing seawater, sediments, and macrobiota with isotopically labeled TNT ((15)N-[TNT]), simultaneously monitoring removal, transformation, mineralization, sorption, and biological uptake over a period of 16 days. TNT degradation was rapid, and we observed accumulation of reduced transformation products dissolved in the water column and in pore waters, sorbed to sediments and suspended particulate matter (SPM), and in the tissues of macrobiota. Bulk δ(15)N analysis of sediments, SPM, and tissues revealed large quantities of (15)N beyond that accounted for in identifiable derivatives. TNT-derived N was also found in the dissolved inorganic N (DIN) pool. Using multivariate statistical analysis and a (15)N mass balance approach, we identify the major transformation pathways of TNT, including the deamination of reduced TNT derivatives, potentially promoted by sorption to SPM and oxic surface sediments.
On a day early last autumn, Ed Andreas went out, as was his wont, for a run from his home in Lebanon, New Hampshire. While on this run, Ed, a contributor to this volume and a collaborator and friend of many of us in the air-sea exchange community, suffered a cardiac event, from which he succumbed on 30 September 2015.
Abstract A multi‐year observational time series was evaluated across the 150 km central axis of the U.S. east coast's Long Island Sound (LIS) estuary, in three distinct regions. Fluxes were calculated at the boundaries of the regions using observations coupled to a hydrodynamic model and applied to a mass balance to assess organic carbon (OC) export from LIS. For all years, during stratified summer periods, LIS was a net exporter of OC to the continental shelf. LIS annual net carbon export however, varied with river flow. The heterotrophic or autotrophic nature of LIS also shifted inter‐annually. During the mass balance analysis period (2009–2012), LIS ranged between net OC import from the continental shelf and heterotrophy in the lowest river flow year (2012) and net export of OC and autotrophy in the highest flow year (2011). Analysis suggests that LIS switches from net OC import to export when the annual river inputs exceed 19 km 3 yr −1 . Applying these thresholds to the annual river flow record suggests that net import occurred in 15% of the last 20 years and that LIS usually is a net exporter of OC (85%). Annually averaged LIS carbon export values based on river flow conditions over the last 20 yr are estimated at 56 ± 64 × 10 6 kg yr −1 . Analysis also suggests that LIS shifts from net heterotrophic to net autotrophic when annual river flow exceeds 26 km 3 yr −1 (35% of the last 20 yr). Net heterotrophic conditions are most common, representing 65% of the last 20 yr.