Drought is a widespread natural hazard resulting from an extended period of reduced rainfall, with significant socioeconomic and ecological consequences. Drought severity can impact food security globally due to its high spatial and temporal coverage. The primary objective of this paper consists of a comparative spatiotemporal analysis of environmental extremes (drought/wetness) through the estimation of a twelve-month Standardized Precipitation Index (SPI12) between three distinct vulnerable agricultural regions in the Mediterranean basin (i.e., Spain, Lebanon and Tunisia), under a climate change environment in the last 38 years (1982–2020). The added value of this paper lies in the simultaneous estimation of temporal and spatial variability of drought and wetness periodic events, paying special attention to the geographical patterns of these extremes both in annual and interannual (seasonal) time scales. The results indicated that Spain and Tunisia (western Mediterranean) exhibit similar patterns over the studied period, while Lebanon demonstrates contrasting trends. Comparing the two extreme dry hydrological years, the Spanish study area faced the highest drought intensity, areal extent and duration (SPI12 = −1.18; −1.84; 28–78%; 9–12 months), followed by the Lebanese (SPI12 = −1.28; −1.39; 37–50%; 7–12 months) and the Tunisian ones (SPI12 = −1.05; −1.08; 10–34%; 8 months). Concerning the wettest hydrological years, the Lebanese study domain has recorded the highest SPI12 values, areal extent and duration (SPI12 = 1.58; 2.28; 66–83%; 8–11 months), followed by the Tunisian (SPI12 = 1.55; 1.79; 49–73%; 7–10 months) and Spanish one (SPI12 = 1.07; 1.99; 21–73%; 4–11 months). The periodicity of drought/wetness episodes is about 20 years in Spanish area and 10 years in the Lebanese area (for drought events), whereas there seems no periodicity in the Tunisian one. Understanding the spatial distribution of drought is crucial for targeted mitigation strategies in high-risk areas, potentially avoiding broad, resource-intensive measures across entire regions.
Agroclimatic classification identifies zones for efficient use of natural resources leading to optimal and non-optimal crop production. The aim of this paper is the development of a methodology to determine sustainable agricultural zones in three Mediterranean study areas, namely, “La Mancha Oriental” in Spain, “Sidi Bouzid” in Tunisia, and “Bekaa” valley in Lebanon. To achieve this, time series analysis with advanced geoinformatic techniques is applied. The agroclimatic classification methodology is based on three-stages: first, the microclimate features of the region are considered using aridity and vegetation health indices leading to water-limited growth environment (WLGE) zones based on water availability; second, landform features and soil types are associated with WLGE zones to identify non-crop-specific agroclimatic zones (NCSAZ); finally, specific restricted crop parameters are combined with NCSAZ to create the suitability zones. The results are promising as compared with the current crop production systems of the three areas under investigation. Due to climate change, the results indicate that these arid or semi-arid regions are also faced with insufficient amounts of precipitation for supporting rainfed annual crops. Finally, the proposed methodology reveals that the employment and use of remote sensing data and methods could be a significant tool for quickly creating detailed, and up to date agroclimatic zones.
Abstract. Risk assessment constitutes the first part within the risk management framework and involves evaluating the importance of a risk, either quantitatively or qualitatively. Risk assessment consists of three steps, namely risk identification, risk estimation and risk evaluation. Nevertheless, the risk management framework also includes a fourth step, i.e., the need for feedback on all the risk assessment undertakings. However, there is a lack of such feedback, which constitutes a serious deficiency in the reduction of environmental hazards at the present time. Risk identification of local or regional hazards involves hazard quantification, event monitoring including early warning systems and statistical inference. Risk identification also involves the development of a database where historical hazard information and hazard effects are included. Similarly, risk estimation involves magnitude–frequency relationships and hazard economic costs. Furthermore, risk evaluation consists of the social consequences of the derived risk and involves cost-benefit analysis and community policy. The objective of this review paper is twofold. On the one hand, it is to address meteorological hazards and extremes within the risk management framework. Analysis results and case studies over Mediterranean ecosystems with emphasis on the wider area of Greece, in the eastern Mediterranean, are presented for each of the three steps of risk assessment for several environmental hazards. The results indicate that the risk management framework constitutes an integrated approach for environmental planning and decision-making. On the other hand, it sheds light on advances and current trends in the considered meteorological and environmental hazards and extreme events, such as tornadoes, waterspouts, hailstorms, heat waves, droughts, floods, heavy convective precipitation, landslides and wildfires, using recorded datasets, model simulations and innovative methodologies.
Water is a natural resource that is in shortage in many areas of the planet. This fact will be exacerbated in the context of the climate crisis. Agriculture is the major consumer of water in Greece but at the same time an important polluter of the environment (sea intrusion problem, pollution of aquifers with fertilizers, herbicides, pesticides). these conditions, the need to reduce water consumption and use it more efficiently is imperative, aiming at sustainable water management. Today there is technology available that allows the use of satellite images and the application of an energy balance at crop and ground level to estimate actual evapotranspiration. This method, to give values, close to reality, must be calibrated using ground data. For this reason, cotton, and maize fields in Thessaly (Central Greece) were systematically monitored for soil moisture and final yield. These water consuming plants are widely cultivated in the Thessalian plain even though the area has a negative water balance. The data collected from the monitoring together with the simulation with the AquaCrop model led to the estimation of the actual evapotranspiration. The model results are considered to correspond to real evapotranspiration since water balance application conditions were favourable (runoff and deep percolation had small or zero values). As a resiult, using the estimation of ETA in the plot we were led to improve the satellite estimation of evapotranspiration.Key words: Evapotranspiration, satellite images, monitoring, AquaCrop
Monitoring the inter-annual land cover evolution is considered of crucial importance at global level, since it may reveal significant changes across the Earth surface. Primary aim of the paper is to explore the spatiotemporal changes occurred in a highly touristic region which hosts a diversity of high-value natural resources (forests, coastal landscapes, croplands). To this end, a supervised land use image classification has been conducted for two years (2000, 2019) adopting the support vector machine algorithm. The outcomes of the classification have been verified by the overall accuracy (OA) index and kappa coefficient (KC). Both indices indicated high accuracy (over 80% and 0.8 respectively) of correct classification. Next, a matrix and a map of changes were developed to provide a quantitative and qualitative perspective of land use changes. The primary changes occurred were related to the transformation of forest to cropland and vice versa, followed by a mild urban expansion (especially for touristic premises).
Forest ecosystems are our priceless natural resource and are a key component of the global carbon budget. Forest fires can be a hazard to the viability and sustainable management of forests with consequences for natural and cultural environments, economies, and the life quality of local and regional populations. Thus, the selection of strategies to manage forest fires, while considering both functional and economic efficiency, is of primary importance. The use of decision support systems (DSSs) by managers of forest fires has rapidly increased. This has strengthened capacity to prevent and suppress forest fires while protecting human lives and property. DSSs are a tool that can benefit incident management and decision making and policy, especially for emergencies such as natural disasters. In this study we reviewed state-of-the-art DSSs that use: database management systems and mathematical/economic algorithms for spatial optimization of firefighting forces; forest fire simulators and satellite technology for immediate detection and prediction of evolution of forest fires; GIS platforms that incorporate several tools to manipulate, process and analyze geographic data and develop strategic and operational plans.
Abstract Strongly affected by the escalating impacts of climate change, wildfires have been increasing in frequency and severity around the world. The primary aim of this study was the development of specific territorial measures—estimating the optimal locations of firefighting resources—to enhance the spatial resilience to wildfires in the fire-prone region of Chalkidiki Prefecture in northern Greece. These measures focus on the resistance to wildfires and the adaptation of strategies to wildfire management, based on the estimation of burn probability, including the effect of anthropogenic factors on fire ignition. The proposed location schemes of firefighting resources such as vehicles consider both the susceptibility to fire and the influence of the topography on travel simulation, highlighting the impact of road slope on the initial firefighting attack. The spatial scheme, as well as the number of required firefighting forces is totally differentiated due to slope impact. When we ignore the topography effect, a minimum number of fire vehicles is required to achieve the maximization of coverage (99.2% of the entire study area) giving priority to the most susceptible regions (that is, employing 18 of 24 available fire vehicles). But when we adopt more realistic conditions that integrate the slope effect with travel time, the model finds an optimal solution that requires more resources (that is, employing all 24 available fire vehicles) to maximize the coverage of the most vulnerable regions within 27 min. This process achieves 80% of total coverage. The proposed methodology is characterized by a high degree of flexibility, and provides optimized solutions to decision makers, while considering key factors that greatly affect the effectiveness of the initial firefighting attack.