The determination of trace Cr(vi) is very important because of its highly carcinogenic and mutagenic effects. In this study, a colorimetric detection method based on 1,4-dithiothreitol functionalized gold nanoparticles (DTT-AuNPs) for nanomolar Cr(vi) in aqueous solution is reported. The method principle was based on the aggregation of DTT-AuNPs induced by Cr(vi), which led to red-shift of the surface plasmon resonance (SPR) peak of DTT-AuNPs. UV-vis absorption spectra, Zeta potentials, and transmission electron microscopy (TEM) images were used to demonstrate the aggregation of DTT-AuNPs. Some parameters affecting the detection including solution pH and DTT concentration were optimized. Under the optimized conditions, a good linear relationship (correlation coefficient r = 0.997 5) was obtained between the ratio (A650/520) of the absorbance at 650 nm to that at 520 nm and the concentration of Cr(vi) over the range of 100-600 nM, and the limit of detection (LOD) for Cr(vi) at a signal-to-noise ratio of 3 was 20 nM. The method showed selective detection toward Cr(vi) against other common metal ions in waters. Furthermore, the method developed was applied for detecting trace Cr(vi) in real water samples, with recoveries of 95%-115%.
Little information is available about the bioaccumulation and biomagnification of antibiotics in marine food webs. Here, we investigate the levels and trophic transfer of 9 sulfonamide (SA), 5 fluoroquinolone (FQ), and 4 macrolide (ML) antibiotics, as well as trimethoprim in nine invertebrate and ten fish species collected from a marine food web in Laizhou Bay, North China in 2014 and 2015. All the antibiotics were detected in the marine organisms, with SAs and FQs being the most abundant antibiotics. Benthic fish accumulated more SAs than invertebrates and pelagic fish, while invertebrates exhibited higher FQ levels than fish. Generally, SAs and trimethoprim biomagnified in the food web, while the FQs and MLs were biodiluted. Trophic magnification factors (TMF) were 1.2–3.9 for SAs and trimethoprim, 0.3–1.0 for FQs and MLs. Limited biotransformation and relatively high assimilation efficiencies are the likely reasons for the biomagnification of SAs. The pH dependent distribution coefficients (log D) but not the lipophilicity (log KOW) of SAs and FQs had a significant correlation (r = 0.73; p < 0.05) with their TMFs. Although the calculated estimated daily intakes (EDI) for antibiotics suggest that consumption of seafood from Laizhou Bay is not associated with significant human health risks, this study provides important insights into the guidance of risk management of antibiotics.
With the continuous development of data storage technology, the complexity, category and size of data increase sharply; on the other hand, the wide expansion of its application domain brings great challenges on the traditional data processing and analysis technology. In this paper, the data analysis and processing technology and its development status are introduced and by multi-dimensional data visualization analysis method and combining the knowledge of domain experts, the equipment purchasing fund data of a large enterprise is analyzed to provide reliable management decision to the investment and investment volume of business fund.
Multidentate oxidovanadium(iv) complexes with different geometric configurations [VO(ox)(bpy)(H2O)] 1, [VO(ox)(phen)(H2O)] 2, [VO(ida)(bpy)]·2H2O 3, (phen)[VO(ida)(phen)]·4H2O 4, and (Hphen)[VO(H2O)(nta)]·2H2O 5 [ox = oxalic acid, bpy = 2,2'-bipyridine, phen = 1,10-phenanthroline, ida = iminodiacetic acid, nta = nitrilotriacetic acid] have been obtained from the reactions of oxidovanadium sulfate or vanadium pentoxide with oxalates, amino-polycarboxylates and N-heterocyclic ligands in neutral solution by the hydrothermal method, and have been fully characterized by elemental, thermogravimetric analyses and single crystal X-ray diffraction, as well as a wide range of spectroscopic techniques such as FT-IR, UV/Vis, NMR, ESI-MS. The anti-tumor properties of oxidovanadium compounds 1-5 were further evaluated in human HepG2 and SMMC-7721 hepatocellular carcinoma cell lines in vitro. The profiles of cytotoxicity, cell cycle distribution, as well as cell apoptosis upon test compound exposure, were determined by MTT and flow cytometry assays. Compound 2 exhibited a much higher anti-tumor activity than others. The IC50 values of 2 were 5.34 ± 0.034 μM and 29.07 ± 0.017 μM in SMMC-7721 and HepG2 cells after 48 h treatment, respectively. Furthermore, compound 2 could significantly arrest the cell cycle in the S and G2/M phases and further induce cell apoptosis in a dose-dependent manner. The structure-activity relationship (SAR) studies revealed that structural elements, for example, metal components, variations of coordination mode, labile water molecules, chelated ligands etc., probably exert an essential cooperative effect on the antitumor activity. In short, these findings not only provide an accessible model system to exploit V-based complexes as potential simple, safe and effective multifunctional antitumor agents, but also open up a rational approach to shed new light on the selection and optimization of ideal drug candidates.
The inhibition performance of 10 imidazoline molecules with number of carbon from 15 to 21 of hydrocarbon straight-chain was studied by weight-loss method and theoretical approaches. The main purpose was to build a quantitative structure–activity relationship (QSAR) between the structural properties and the inhibition efficiencies, and then to predict efficiencies of new corrosion inhibitors. The quantum chemical calculation suggested that the active region of imidazoline molecules was located on the imidazoline ring and hydrophilic group, and active sites were concentrated on the nitrogen atoms of the molecules and carbon atoms of hydrophilic group. A model in accordance with the real experimental solution was built in the molecular dynamics, and the equilibrium configuration indicated that the imidazoline molecules were adsorbed on Fe (110) surface in parallel manner. Descriptors for QSAR model building were selected by principal component analysis (PCA) and the model was built by the support vector machine (SVM) approach, which shows good performance since the value of correlation coefficient (R) was 0.99 and the root mean square error (RMSE) was 0.94. Additionally, six new imidazoline molecules were theoretically designed and the inhibition efficiencies of three molecules were predicted to be more than 86% by the established QSAR model.
A dozen of homoditopic cations, possessing different spacer lengths and rigidities, as well as sizes, shapes, and charges of terminal groups, were synthesized as candidate gemini guests for the complexation of p-sulfonatocalix[4]arenes (SC4A). The 12 gemini guests are divided into five species according to the different terminal groups: imidazolium (G1–G3), pyridinium (G4–G6), quinolinium (G7), viologen (G8–G11), and 1,4-diazabicyclo[2.2.2]octane (DBO, G12). Their binding structures and stoichiometries with SC4A were examined by NMR spectroscopy, which is helpful to construct diverse highly ordered assemblies. The obtained results show that the length of the linkers, as well as the charge numbers on the end groups have a pronounced effect on the binding stoichiometry, whereas the size and shape of the terminal groups have no significant influence. Furthermore, both the stability constants and thermodynamic parameters of SC4A with the terminal subunits were determined by the isothermal titration calorimetry experiments, which are valuable to understand the binding behavior, giving quantitatively deep insight.
Bioaccumulation of organophosphate esters (OPEs) by plants has been widely studied, but how actual root exudates influence their bioavailability to plants is largely unexplored. Here, we examined whether root exudates could promote desorption of OPEs, thereby enhancing bioavailability and subsequent accumulation potential. Root exudate components exert great influences on the sorption/desorption isotherms of OPEs in soils, resulting in activating OPEs and enhanced bioavailability. Among root exudate components, citric acid was confirmed to play a crucial role in driving OPEs, with 77.7−90.3% attribution. Citric acid at rhizosphere levels (0.01−0.4 mM) can successfully reduce OPEs sorption to soils by decreasing electrostatic interaction, ligand exchange, and hydrophobic force. Pot experiments indicated that the addition of citric acid can significantly increase OPEs dissolution and bioaccumulation from the rhizosphere soil to Suaeda salsa . A higher level of citric acid in rhizosphere soil resulted in a higher accumulation of OPEs in Suaeda salsa , which was partly attributed to the enhanced OPEs mobility, and the increased root lengths (13.4−29.0%) and tip numbers (60.2−120%), promoting OPEs uptake by roots. Our findings suggest the activation process of OPEs in soils by citric acid at rhizosphere levels and provide insights into designing LMWOAs-enhanced phytoremediation techniques in natural environment.