GPR35 is a poorly characterized G protein-coupled receptor at which kynurenic acid has been suggested to be the endogenous ligand. We wished to test this and develop assays appropriate for the study of this receptor.Human and rat orthologues of GPR35 were engineered and expressed and assays developed to assess interaction with β-arrestin-2, activation of Gα₁₃ and agonist-induced internalization.GPR35-β-arrestin-2 interaction assays confirmed that both the endogenous tryptophan metabolite kynurenic acid and the synthetic ligand zaprinast had agonist action at each orthologue. Zaprinast was substantially more potent than kynurenic acid at each and both agonists displayed substantially greater potency at rat GPR35. Two novel thiazolidinediones also displayed agonism and displayed similar potency at each GPR35 orthologue. The three ligand classes acted orthosterically with respect to each other, suggesting overlapping binding sites and, consistent with this, mutation to alanine of the conserved arginine at position 3.36 or tyrosine 3.32 in transmembrane domain III abolished β-arrestin-2 recruitment in response to each ligand at each orthologue.These studies indicate that β-arrestin-2 interaction assays are highly appropriate to explore the pharmacology of GPR35 and that Gα₁₃ activation is an alternative avenue of signal generation from GPR35. Arginine and tyrosine residues in transmembrane domain III are integral to agonist recognition and function of this receptor. The potency of kynurenic acid at human GPR35 is sufficiently low, however, to question whether it is likely to be the true endogenous ligand for this receptor.
Significance G protein-coupled receptors (GPCRs) have long been considered to function primarily at the plasma membrane. Consequently, most drugs are designed to target GPCRs at the cell surface. Ligand-bound GPCRs undergo clathrin- and dynamin-dependent endocytosis. It is uncertain whether GPCRs in endosomes control complex pathophysiological processes in vivo and are a viable therapeutic target. We report that the CGRP receptor signals from endosomes to regulate activity of pain-transmitting neurons in the spinal cord. Lipid-conjugated CGRP receptor antagonists accumulate in endosomes, selectively inhibit endosomal signals, and block sustained excitation of spinal neurons and persistent nociception. The results suggest that GPCRs in endosomes, in addition to those at the cell surface, control ongoing pathophysiological processes in vivo and identify GPCRs in endosomes as a new target for therapy.
Allosteric modulators of G protein-coupled receptors (GPCRs) have a number of potential advantages compared to agonists or antagonists that bind to the orthosteric site of the receptor. These include the potential for receptor selectivity, maintenance of the temporal and spatial fidelity of signaling in vivo, the ceiling effect of the allosteric cooperativity which may prevent overdose issues, and engendering bias by differentially modulating distinct signaling pathways. Here we describe the discovery, synthesis, and molecular pharmacology of δ-opioid receptor-selective positive allosteric modulators (δ PAMs). These δ PAMs increase the affinity and/or efficacy of the orthosteric agonists leu-enkephalin, SNC80 and TAN67, as measured by receptor binding, G protein activation, β-arrestin recruitment, adenylyl cyclase inhibition, and extracellular signal-regulated kinases (ERK) activation. As such, these compounds are useful pharmacological tools to probe the molecular pharmacology of the δ receptor and to explore the therapeutic potential of δ PAMs in diseases such as chronic pain and depression.
Fluorescently labeled ligands are useful pharmacological research tools for studying receptor localization, trafficking, and signaling processes via fluorescence imaging. They are also employed in fluorescent binding assays. This study is centered on the design, synthesis, and pharmacological evaluation of fluorescent probes for the opioid receptors, for which relatively few non-peptidic fluorescent probes currently exist. The known μ-opioid receptor (MOR) partial agonist, buprenorphine, was structurally elaborated to include an amidoalkylamine linker moiety that was coupled with a range of fluorophores to afford new fluorescent probes. All compounds proved to be selective MOR antagonists. Confocal fluorescence microscopy studies revealed that the probe incorporating a sulfonated cyanine-5 fluorophore was the most appropriate for imaging studies. This ligand was subsequently employed in an automated fluorescence-based competition binding assay, allowing the pKi values of several well-known opioid ligands to be determined. Thus, this new probe will prove useful in future studies of MOR receptor pharmacology.
Biased agonism is having a major impact on modern drug discovery, and describes the ability of distinct G protein–coupled receptor (GPCR) ligands to activate different cell signaling pathways, and to result in different physiologic outcomes. To date, most studies of biased agonism have focused on synthetic molecules targeting various GPCRs; however, many of these receptors have multiple endogenous ligands, suggesting that "natural" bias may be an unappreciated feature of these GPCRs. The μ-opioid receptor (MOP) is activated by numerous endogenous opioid peptides, remains an attractive therapeutic target for the treatment of pain, and exhibits biased agonism in response to synthetic opiates. The aim of this study was to rigorously assess the potential for biased agonism in the actions of endogenous opioids at the MOP in a common cellular background, and compare these to the effects of the agonist d-Ala2-N-MePhe4-Gly-ol enkephalin (DAMGO). We investigated activation of G proteins, inhibition of cAMP production, extracellular signal-regulated kinase 1 and 2 phosphorylation, β-arrestin 1/2 recruitment, and MOP trafficking, and applied a novel analytical method to quantify biased agonism. Although many endogenous opioids displayed signaling profiles similar to that of DAMGO, α-neoendorphin, Met-enkephalin-Arg-Phe, and the putatively endogenous peptide endomorphin-1 displayed particularly distinct bias profiles. These may represent examples of natural bias if it can be shown that they have different signaling properties and physiologic effects in vivo compared with other endogenous opioids. Understanding how endogenous opioids control physiologic processes through biased agonism can reveal vital information required to enable the design of biased opioids with improved pharmacological profiles and treat diseases involving dysfunction of the endogenous opioid system.
The chemokine receptor CXCR3 is a GPCR found predominantly on activated T cells. CXCR3 is activated by three endogenous peptides; CXCL9, CXCL10 and CXCL11. Recently, a small-molecule agonist, VUF10661, has been reported in the literature and synthesized in our laboratory. The aim of the present study was to provide a detailed pharmacological characterization of VUF10661 by comparing its effects with those of CXCL11.Agonistic properties of VUF10661 were assessed in a chemotaxis assay with murine L1.2 cells transiently transfected with cDNA encoding the human CXCR3 receptor and in binding studies, with [(125)I]-CXCL10 and [(125)I]-CXCL11, on membrane preparations from HEK293 cells stably expressing CXCR3. [(35)S]-GTPγS binding was used to determine its potency to induce CXCR3-mediated G protein activation and BRET-based assays to investigate its effects on intracellular cAMP levels and β-arrestin recruitment.VUF10661 acted as a partial agonist in CXCR3-mediated chemotaxis, bound to CXCR3 in an allosteric fashion in ligand binding assays and activated G(i) proteins with the same efficacy as CXCL11 in the [(35)S]-GTPγS binding and cAMP assay, while it recruited more β-arrestin1 and β-arrestin2 to CXCR3 receptors than the chemokine.VUF10661, like CXCL11, activates both G protein-dependent and -independent signalling via the CXCR3 receptor, but probably exerts its effects from an allosteric binding site that is different from that for CXCL11. It could stabilize different receptor and/or β-arrestin conformations leading to differences in functional output. Such ligand-biased signalling might offer interesting options for the therapeutic use of CXCR3 agonists.
Due to its potential role in processes which rely on mu-opioid receptor function, investigating the relationship between Mu-Opioid receptors (MORs), neuroinflammation, and glial cells has gained momentum. Traditionally, MOR activation has been associated with immunosuppression, but recent findings suggest a more nuanced, bidirectional relationship with the immune system. To further investigate this relationship, herein, we investigated the role of the activated microglia secretome and proinflammatory cytokines in neuronal MOR expression and signalling. Our results show that both microglial secretome and specific cytokines increase neuronal MOR expression and enhance the [D-Ala2, N-MePhe4, Gly-ol]-enkephalin (DAMGO)-induced MOR activation. We also show that DAMGO-induced neuroinflammation increases neuronal MOR expression, activation, and regulation. Our findings suggest a feedback loop between microglial activation, cytokine release, and neuronal MOR dynamics. Future research should delve into the temporal dynamics and functional implications of this relationship, particularly concerning clinically relevant opioids like morphine and fentanyl and pain management.