The M184V mutation in human immunodeficiency virus (HIV) reverse transcriptase is associated with high-level resistance to both (-)2',3'-dideoxy-3'-thiacytidine (3TC) and (-)2',3'-dideoxy-5-fluoro-3'-thiacytidine as well as low-level resistance to 2',3'-dideoxyinosine, 2',3'-dideoxycytidine, and abacavir. This mutation is also associated with diminished HIV replicative fitness as well as several functional changes in enzyme activity, including diminutions in polymerase processivity, pyrophosphorylysis, and nucleotide primer unblocking. Despite the fact that M184V encodes up to 1,000-fold resistance to 3TC, we asked whether this drug might still display some antiviral effect in regard to viruses containing this mutation. Cell-free assays revealed that high concentrations of 3TC triphosphate (i.e., >100 micro M) could affect chain termination and/or inhibit purified reverse transcriptase containing the M184V substitution. This effect became more pronounced with elongation of reverse transcriptase products. In newly infected cells (i.e., peripheral blood mononuclear cells), we found that the amount of full-length reverse transcriptase product was diminished in the presence of 2 to 10 micro M 3TC, although no decrease in the first product of the reverse transcriptase reaction, i.e., minus strong-stop DNA, was observed. In the presence of two other HIV inhibitors, e.g., nevirapine and indinavir, 3TC exerted additive effects in tissue culture at concentrations only marginally higher than the 50% inhibitory concentration (IC(50)). Reverse transcriptases cloned from clinical isolates harboring M184V in the context of multidrug resistance had similar IC(50) values for 3TC triphosphate compared to reverse transcriptase containing only the M184V mutation. These results suggest that viruses containing M184V can retain a higher degree of sensitivity to 3TC than previously assumed.
We have assessed interactions between the reverse transcriptase (RT) of human immunodeficiency virus type 1 (HIV-1) and a neutralizing monoclonal antibody (1E8) that hinders binding of deoxynucleoside triphosphate (dNTP) substrates. Steady-state reactions with homopolymeric template-primers revealed that 1E8 antagonized inhibition of RT activity mediated by 3'-azido-3'-deoxythymidine triphosphate and 2',3'-dideoxycytidine triphosphate. However, an additive or synergistic inhibition of RT polymerase activity was noted when 1E8 and the nonnucleoside RT inhibitors nevirapine and delavirdine were studied. Chain elongation and dNTP incorporation studies using an HIV-1 genome-derived heteropolymeric template and either oligodeoxynucleotide or tRNA3(Lys) as the primer yielded results consistent with the above observations. 1E8 also increased pausing at certain sites during synthesis of negative-strand, strong-stop DNA, whether or not ddNTP and nonnucleoside RT inhibitors were present.
We have tested both wild-type and drug-resistant mutated, recombinant human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) molecules for sensitivity to each of two non-nucleoside RT inhibitors (NNRTI), (+)-calanolide A and nevirapine, in primer extension assays. We found that RT containing either the V106A or Y181C substitutions, associated with NNRTI resistance, displayed approximately 90-fold resistance to nevirapine but remained fully sensitive to (+)-calanolide A and that the Y181C mutation marginally enhanced susceptibility to the latter drug. In contrast, the Y188H substitution in RT resulted in about 30-fold resistance to (+)-calanolide A in these assays but did not result in diminished sensitivity to nevirapine. Tissue culture results indicated that the combination of (+)-calanolide A and nevirapine possessed an additive to weakly synergistic effect in blocking replication of HIV-1 in tissue culture. These results suggest that (+)-calanolide A and nevirapine might have rationale as a combination therapy for HIV disease.
Transgenic crops producing insecticidal proteins are effective to manage lepidopteran pests. Development of insect-resistance is the major threat to Bacillus thuringiensis (Bt) crops such as Cry1Ah-Maize. Laboratory selection with Bt-Cry1Ah toxin incorporated in artificial diet, during 48 generations of Asian corn borer (ACB) Ostrinia furnacalis produced 200-fold resistance. This resistant colony ACB-AhR readily consumed and survived on Cry1Ah-expressing Bt-maize. Cross-resistance analysis showed high cross-resistance to Cry1F (464-fold), moderate cross-resistance to Cry1Ab (28.38-fold), Cry1Ac (22.11-fold) and no cross-resistance to Cry1Ie toxin. This ACB-AhR cross-resistant phenotype is different from ACB-Cry1Fa resistant population that showed no cross resistance to Cry1Ah, suggesting that different mechanisms of resistance were selected in these two populations. Bioassays of reciprocal F1 crosses-progeny suggested autosomal inheritance of Cry1Ah resistance with no maternal effects. The dominance of resistance increased as concentration decreased. In Cry1Ah-maize tissues the progeny of reciprocal F1 crosses behaved as functionally recessive. Progenies analysis from backcrosses (F1 × resistant strain) suggested polygenic contribution to Cry1Ah- resistance in ACB-AhR. The use of multiple toxins is an imperative factor for delaying evolution of resistance to Cry1Ah-corn in ACB. However, the fact that ACB-AhR showed cross resistance to Cry1Fa indicates that selection of toxins for pyramided plants should be carefully done.
Impacts of mutations at position E138 (A/G/K/Q/R/V) alone or in combination with M184I in HIV-1 reverse transcriptase (RT) were investigated. We also determined why E138K is the most prevalent nonnucleoside reverse transcriptase inhibitor mutation in patients failing rilpivirine (RPV) therapy. Recombinant RT enzymes and viruses containing each of the above-mentioned mutations were generated, and drug susceptibility was assayed. Each of the E138A/G/K/Q/R mutations, alone or in combination with M184I, resulted in decreased susceptibility to RPV and etravirine (ETR). The maximum decrease in susceptibility to RPV was observed for E138/R/Q/G by both recombinant RT assay and cell-based assays. E138Q/R-containing enzymes and viruses also showed the most marked decrease in susceptibility to ETR by both assays. The addition of M184I to the E138 mutations did not significantly change the levels of diminution in drug susceptibility. These findings indicate that E138R caused the highest level of loss of susceptibility to both RPV and ETR, and, accordingly, E138R should be recognized as an ETR resistance-associated mutation. The E138K/Q/R mutations can compensate for M184I in regard to both enzymatic fitness and viral replication capacity. The favored emergence of E138K over other mutations at position E138, together with M184I, is not due to an advantage in either the level of drug resistance or viral replication capacity but may reflect the fact that E138R and E138Q require two distinct mutations to occur, one of which is a disfavorable G-to-C mutation, whereas E138K requires only a single favorable G-to-A hypermutation. Of course, other factors may also affect the concept of barrier to resistance.
We evaluated Sofosbuvir (SOF), the anti-hepatitis C virus prodrug of β-d-2'-deoxy-2'-α-fluoro-2'-β-C-methyluridine-5'-monophosphate, for potential inhibitory activity against DENV replication. Both cell-based and biochemical assays, based on use of purified DENV full-length NS5 enzyme, were studied. Cytopathic effect protection and virus yield reduction assays confirmed that SOF possessed anti-DENV activity in cell culture with a 50% effective concentration (EC50) of 4.9 µM and 1.4 µM respectively. Real-time RT-PCR verified that SOF inhibits generation of viral RNA with an EC50 of 9.9 µM. Purified DENV NS5 incorporated the active triphosphate form (SOF-TP) into nascent RNA, causing chain-termination. Relative to the natural UTP, the incorporation efficiency of SOF-TP was low (discrimination value = 327.5). In a primer extension assay, SOF-TP was active against DENV NS5 wild-type polymerase activity with an IC50 of 14.7 ± 2.5 µM. The S600T substitution in the B Motif of DENV polymerase conferred 4.3-fold resistance to SOF-TP; this was due to decreased incorporation efficiency rather than enhanced excision of the incorporated SOF nucleotide. SOF has antiviral activity against DENV replication. The high discrimination value in favor of UTP in enzyme assays may not necessarily preclude antiviral activity in cells. SOF may be worthy of evaluation against severe DENV infections in humans.
ABSTRACT Recently, several phase 3 clinical trials (ECHO and THRIVE) showed that E138K and M184I were the most frequent mutations to emerge in patients who failed therapy with rilpivirine (RPV) together with two nucleos(t)ide reverse transcriptase inhibitors, emtricitabine (FTC) and tenofovir (TDF). To investigate the basis for the copresence of E138K and M184I, we generated recombinant mutated and wild-type (WT) reverse transcriptase (RT) enzymes and HIV-1 NL4-3 infectious clones. Drug susceptibilities were determined in cord blood mononuclear cells (CBMCs). Structural modeling was performed to analyze any impact on deoxynucleoside triphosphate (dNTP) binding. The results of phenotyping showed that viruses containing both the E138K and M184V mutations were more resistant to each of FTC, 3TC, and ETR than viruses containing E138K and M184I. Viruses with E138K displayed only modest resistance to ETR, little resistance to efavirenz (EFV), and no resistance to either FTC or 3TC. E138K restored viral replication capacity (RC) in the presence of M184I/V, and this was confirmed in cell-free RT processivity assays. RT enzymes containing E138K, E138K/184I, or E138K/184V exhibited higher processivity than WT RT at low dNTP concentrations. Steady-state kinetic analysis demonstrated that the E138K mutation resulted in decreased K m s for dNTPs. In contrast, M184I/V resulted in an increased K m for dNTPs compared to those for WT RT. These results indicate that the E138K mutation compensates for both the deficit in dNTP usage and impairment in replication capacity by M184I/V. Structural modeling shows that the addition of E138K to M184I/V promotes tighter dNTP binding.
Human immunodeficiency virus type 1 (HIV-1) variants were selected for resistance against the (+) and (-) enantiomers of a novel nucleoside analogue, 2′-deoxy-3′-oxa-4′-thiocytidine (dOTC), using the infectious molecular clone HXB2D grown in the MT-4 line of human T cells. The variants selected with (+) dOTC were approximately 6–7-fold less sensitive than wild-type virus to this drug. Cloning and sequencing of the complete reverse transcriptase (RT) coding region of these variants identified the M184I mutation and further selection with virus containing the M184I substitution led to the appearance of an M184V mutation. In contrast, selection experiments performed with (-) dOTC yielded variants capable of growing in drug concentrations as high as 100 μM, but phenotypic analysis of these viruses revealed near wild-type 50% inhibitory concentration (IC 50 ) values for this compound. Site-directed mutagenesis experiments in which the M184I and M184V mutations were introduced into HXB2D confirmed the importance of these mutations when viruses were grown in MT4 cells. However, wild-type IC 50 values in regard to both (–) and (+) dOTC were obtained when these recombinant viruses were grown in cord blood mononuclear cells (CBMC). Clinical isolates of HIV-1 resistant to lamivudine and containing the M184V substitution also displayed low-level resistance to both (–) and (+) dOTC when grown in CBMC. Finally, cell-free RT assays were performed in the presence of either (–) dOTC triphosphate, (+) dOTC triphosphate, or the triphosphate of a racemic mixture of (+) and (–) dOTC with wild-type and mutated M184V-containing recombinant RT. The data demonstrate chain termination effects of these compounds with regard to both wild-type and mutated enzyme and that the latter was approximately twofold less sensitive than the former to these drugs.
Abstract One of the many extreme events as a result of climate change is the frequent appearance of extraordinarily daily high temperatures that can directly drive an insect's adaptive response. Insects have complex life cycles that may uncouple temperature's effects in one stage from the physiology in the next. In this study we focused on the Asian corn borer (ACB), Ostrinia furnacalis (Guenée) (Lepidoptera: Crambidae), one of the most important pests of maize (corn) in Asia, investigated the consequences of eggs exposed to ecologically relevant heat shock regimes, simulating heat waves at extreme high temperature. This consisted of five 90‐min heat treatments separated by two degrees that ranged from 37 to 45°C for three consecutive days compared to a constant temperature of 25°C. Temperature that triggered mortality was between 39 and 41°C. Egg hatching significantly declined when temperature was 41°C or higher. There was no egg hatching at 45°C. Developmental times were significantly prolonged and the larval growth rate became slower in treatments of 41 and 43°C. There were no significant differences in pupal mass, fecundity, and sex ratio among treatments. Life table parameters showed significant adverse effects at treatments of 41 and 43°C. Depending on the fitness response of the ACB, environmental heat waves can be classified into three categories based on temperature criteria, i.e., adaptable (35–39°C), critical (39–45°C), and fatal (≥45°C). The findings of the present study will serve as an important reference for forecasting the population dynamics of the ACB.