This research reviews recent advances in the domain of Automated Rule Checking (ARC) and argues that current systems are predominantly designed to validate models in post-design stages, useful for applications such as e-permitting. However, such a design-check-separated paradigm imposes a burden on designers as they need to iteratively fix the fail-to-pass issues. Accordingly, the study reviews the best-practices of IFC-based ARC systems and proposes a framework for ARC system development, aiming to achieve proactive bottom-up solutions building upon the requirements and resources of end-users. To present and evaluate its capabilities, the framework is implemented in a real-life case study. The case study presents all the necessary steps that should be taken for the development of an ARC solution from rule selection and analysis, to implementation and feedback. It is explained how a rule checking problem can be broken down into separate modules implemented in an iterative approach. Results show that the proposed framework is feasible for successful implementation of ARC systems and highlight that a stable data standard and modeling guideline is needed to achieve proactive ARC solutions. The study also discusses that there are some critical limitations in using IFC which need to be addressed in future studies.
Due to complexity and dynamics of construction work, resource, and cash flows, poor management of them usually leads to time and cost overruns, bankruptcy, even project failure. Existing approaches in construction failed to achieve optimal control of resource flow in a dynamic environment with uncertainty. Therefore, this paper introducess a model and method to adaptive control the resource flows to optimize the work and cash flows of construction projects. First, a mathematical model based on a partially observable Markov decision process is established to formulate the complex interactions of construction work, resource, and cash flows as well as uncertainty and variability of diverse influence factors. Meanwhile, to efficiently find the optimal solutions, a deep reinforcement learning (DRL) based method is introduced to realize the continuous adaptive optimal control of labor and material flows, thereby optimizing the work and cash flows. To assist the training process of DRL, a simulator based on discrete event simulation is also developed to mimic the dynamic features and external environments of a project. Experiments in simulated scenarios illustrate that our method outperforms the vanilla empirical method and genetic algorithm, possesses remarkable capability in diverse projects and external environments, and a hybrid agent of DRL and empirical method leads to the best result. This paper contributes to adaptive control and optimization of coupled work, resource, and cash flows, and may serve as a step stone for adopting DRL technology in construction project management.
In the construction area, visuals such as drawings, photos, videos, and 3D models, play a significant role in the design, build and maintenance of a facility, bringing efficiency to generate, transfer, and store information. Advanced visual computing techniques facilitate the understanding of design contents, work plans, and other types of information shared in the construction industry. Automatic visual data collection and analysis provide many possibilities to the construction industry and a large number of works have investigated how visual computing can improve construction management processes and other problems in the construction area. However, a comprehensive literature review is needed. This study uses bibliometric approaches to review the works published to date, and analyses the development of knowledge, significant research results, and trends. The purpose of this study is to help newcomers to this research field understand knowledge structure and formulate research directions, thereby enhancing knowledge development. From this study, it can be concluded that computer vision is a key axis of improvement. Moreover, building information modeling, laser scanning, and other visualization-related techniques are also important in advancing the construction area.