Abstract Zymomonas mobilis is a well-recognized ethanologenic bacterium with outstanding characteristics which make it a promising platform for the biotechnological production of relevant building blocks and fine chemicals compounds. In the last years, research has been focused on the physiological, genetic, and metabolic engineering strategies aiming at expanding Z. mobilis ability to metabolize lignocellulosic substrates toward biofuel production. With the expansion of the Z. mobilis molecular and computational modeling toolbox, the potential of this bacterium as a cell factory has been thoroughly explored. The number of genomic, transcriptomic, proteomic, and fluxomic data that is becoming available for this bacterium has increased. For this reason, in the forthcoming years, systems biology is expected to continue driving the improvement of Z. mobilis for current and emergent biotechnological applications. While the existing molecular toolbox allowed the creation of stable Z. mobilis strains with improved traits for pinpointed biotechnological applications, the development of new and more flexible tools is crucial to boost the engineering capabilities of this bacterium. Novel genetic toolkits based on the CRISPR-Cas9 system and recombineering have been recently used for the metabolic engineering of Z. mobilis . However, they are mostly at the proof-of-concept stage and need to be further improved. Graphical Abstract
CA and BC acknowledge their grants (UMINHO/BPD/4/2019 and SFRH/BD/132324/2017) from FCT. This study received financial support from UID/BIO/04469/2019 unit; COMPETE 2020 (POCI-01-0145-FEDER-006684), FoSynBio (POCI-01-0145-FEDER029549), NewFood (NORTE-01-0246-FEDER-000043) and BioTecNorte (NORTE-01-0145-FEDER-000004). R. Moreira acknowledges the financial support to the Xunta de Galicia and FEDER by the project (EDD431B 2019/01).
Due to the continuous optimization of cutting plans, the cotton scrap size resulting from the cutting of components for clothing production (post-industrial residues) is often considered insufficient to obtain fibres with the proper length to produce a new yarn through mechanical recycling processes; so it is important to search for other applications for these wastes. In this context, small pieces of cotton were submitted to a shredding process to obtain recycled fibres. Cotton small pieces and recycled fibres were then submitted to a refining process to achieve refined fibres. Using these materials alone and in blends with refined and unrefined bleached eucalyptus kraft pulp (BEKP), wet-laid nonwovens were developed and characterized. An analysis of the results revealed that the replacement of unrefined BEKP by 70% cotton waste fibres in wet-laid nonwovens, reducing the use of virgin raw material, enhances the structures’ mechanical properties by 80% and 14%, for small pieces or recycled fibres, respectively. Additionally, refining small pieces of cotton seems to be more promising than refining recycled fibres, because less steps are required to obtain wet-laid nonwovens with better mechanical properties. These results highlight the potential of this approach to be explored further for different products and end applications.
Zymomonas mobilis ZM4 is an attractive host for the development of microbial cell factories to synthesize high-value compounds, including prebiotics. In this study, a straightforward process to produce fructooligosaccharides (FOS) from sucrose was established. To control the relative FOS composition, recombinant Z. mobilis strains secreting a native levansucrase (encoded by sacB) or a mutated β-fructofuranosidase (Ffase-Leu196) from Schwanniomyces occidentalis were constructed. Both strains were able to produce a FOS mixture with high concentration of 6-kestose. The best results were obtained with Z. mobilis ZM4 pB1-sacB, that was able to produce 73.4 ± 1.6 g L−1 of FOS, with a productivity of 1.53 ± 0.03 g L-1 h-1 and a yield of 0.31 ± 0.03 gFOS gsucrose-1. This is the first report on the FOS production using a mutant Z. mobilis ZM4 strain in a one-step process.