Monitoring the blood pump and the oxygen gas flow meter are important maneuvers at the initiation of cardiopulmonary bypass (CPB). We present a novel system, designed to improve safety in the heart-lung machine by linking the control of blood flow and the oxygen gas flow meter. This system uses a mass flow controller to provide and control oxygen flow based on the ventilation-perfusion (V/Q) ratio, using the electronic signal of the blood flow. We tested the system, in vitro and in vivo, and examined the resulting level of blood oxygenation. When extracorporeal circulation was initiated, the oxygen flow was instantly linked to the circulating blood flow, providing an adequate V/Q ratio; the partial pressure of oxygen in the blood was maintained at a normal level. Although we have yet to confirm the safety of this system in clinical trials, the new safety assist device can automatically supply oxygen to the oxygenator at the beginning of CPB.
We proposed a blood viscosity estimation method based on pressure-flow characteristics of oxygenators used during cardiopulmonary bypass (CPB) in a previous study that showed the estimated viscosity to correlate well with the measured viscosity. However, the determination of the parameters included in the method required the use of blood, thereby leading to high cost of calibration. Therefore, in this study we propose a new method to monitor blood viscosity, which approximates the pressure-flow characteristics of blood considered as a non-Newtonian fluid with characteristics of a Newtonian fluid by using the parameters derived from glycerin solution to enable ease of acquisition. Because parameters used in the estimation method are based on fluid types, bovine blood parameters were used to calculate estimated viscosity (η e ), and glycerin parameters were used to estimate deemed viscosity (η deem ). Three samples of whole bovine blood with different hematocrit levels (21.8%, 31.0%, and 39.8%) were prepared and perfused into the oxygenator. As the temperature changed from 37 °C to 27 °C, the oxygenator mean inlet pressure and outlet pressure were recorded for flows of 2 L/min and 4 L/min, and the viscosity was estimated. The value of deemed viscosity calculated with the glycerin parameters was lower than estimated viscosity calculated with bovine blood parameters by 20-33% at 21.8% hematocrit, 12-27% at 31.0% hematocrit, and 10-15% at 39.8% hematocrit. Furthermore, deemed viscosity was lower than estimated viscosity by 10-30% at 2 L/min and 30-40% at 4 L/min. Nevertheless, estimated and deemed viscosities varied with a similar slope. Therefore, this shows that deemed viscosity achieved using glycerin parameters may be capable of successfully monitoring relative viscosity changes of blood in a perfusing oxygenator.
The viscosity obtained from pressure-flow characteristics of an oxygenator may help to detect factors that change oxygenator resistance. The objective of this study was to model pressure-flow characteristics of a membrane oxygenator with an integrated arterial filter and to quantify their influence on apparent viscosity of non-Newtonian fluids. One Newtonian fluid (glycerin solution) and two non-Newtonian fluids (whole bovine blood and a human red blood cell suspension) were perfused through an oxygenator and their pressure-flow characteristics examined systematically. Four resistance parameters for the pressure gradient characteristics approximation equation were obtained by the least squares method from the relational expression of pressure-flow characteristics and viscosity. For all three fluids, a non-linear flow to pressure change was observed with a coefficient of determination of almost 1 by exponential approximation. The glycerin solution had a higher pressure gradient (10-70%) than the other fluids; the apparent viscosity of the non-Newtonian fluids was around 35% lower than the static one measured by a torsional oscillation viscometer. Overall, our study demonstrated that the influence on the apparent viscosity of non-Newtonian fluids can be quantified by pressure gradient differences in a membrane oxygenator with an integrated arterial filter.
Cardiopulmonary bypass (CPB) is an indispensable technique in cardiac surgery, providing the ability to temporarily replace cardiopulmonary function and create a bloodless surgical field. Traditionally, the operation of CPB systems has depended on the expertise and experience of skilled perfusionists. In particular, simultaneously controlling the arterial and venous occluders is difficult because the blood flow rate and reservoir level both change, and failure may put the patient’s life at risk. This study proposes an automatic control system with a two-degree-of-freedom model matching controller nested in an I-PD feedback controller to simultaneously regulate the blood flow rate and reservoir level. CPB operations were performed using glycerin and bovine blood as perfusate to simulate flow-up and flow-down phases. The results confirmed that the arterial blood flow rate followed the manually adjusted target venous blood flow rate, with an error of less than 5.32%, and the reservoir level was maintained, with an error of less than 3.44% from the target reservoir level. Then, we assessed the robustness of the control system against disturbances caused by venting/suction of blood. The resulting flow rate error was 5.95%, and the reservoir level error 2.02%. The accuracy of the proposed system is clinically satisfactory and within the allowable error range of 10% or less, meeting the standards set for perfusionists. Moreover, because of the system’s simple configuration, consisting of a camera and notebook PC, the system can easily be integrated with general CPB equipment. This practical design enables seamless adoption in clinical settings. With these advancements, the proposed system represents a significant step towards the automation of CPB.
Abstract During cardiopulmonary bypass (CPB), blood viscosity conspicuously increases and decreases due to changes in hematocrit and blood temperature. Nevertheless, blood viscosity is typically not evaluated, because there is no technology that can provide simple, continuous, noncontact monitoring. We modeled the pressure‐flow characteristics of an oxygenator in a previous study, and in that study we quantified the influence of viscosity on oxygenator function. The pressure‐flow monitoring information in the oxygenator is derived from our model and enables the estimation of viscosity. The viscosity estimation method was proposed and investigated in an in vitro experiment. Three samples of whole bovine blood with different hematocrit levels (21.8, 31.0, and 39.8%) were prepared and perfused into the oxygenator. As the temperature changed from 37°C to 27°C, the mean inlet pressure ( P in ) and outlet pressure ( P out ) of the oxygenator and the flow (Q) and viscosity of the blood were measured. The estimated viscosity was calculated from the pressure gradient (Δ P = P in − P out ) and Q and was compared to the measured blood viscosity. A strong correlation was found between the two methods for all samples. Bland‐Altman analysis revealed a mean bias of −0.0263 mPa.s, a standard deviation of 0.071 mPa.s, limits of agreement of −0.114–0.166 mPa.s, and a percent error of 5%. Therefore, this method is considered compatible with the torsional oscillation viscometer that has plus or minus 5% measurement accuracy. Our study offers the possibility of continuously estimating blood viscosity during CPB.
The cardiopulmonary bypass system used in cardiac surgery can generate microbubbles (MBs) that may cause complications, such as neurocognitive dysfunction, when delivered into the blood vessel. Estimating the number of MBs generated, thus, is necessary to enable the surgeons to deal with it. To this end, we previously proposed a neural network-based model for estimating the number of MBs from four factors measurable from the cardiopulmonary bypass system: suction flow rate, venous reservoir level, blood viscosity, and perfusion flow rate. However, the model has not been adapted to the data collected from actual surgery cases. In this study, the accuracy of MBs estimated by the proposed model was examined in four clinical cases. The results showed that the coefficient of determination between estimated MBs and the measured MBs throughout the surgeries was R2=0.558 (p<0.001). We found that the surgical treatments, such as administration of drugs, fluids and blood transfusions, increased the number of measured MBs. The coefficient of determination increased to R 2 = 0.8762 (p<0.001) by excluding the duration of these treatments. This result indicates that the model can estimate the number of MBs with high accuracy under the clinical environment.
This paper proposes an algorithm that estimates blood viscosity during cardiopulmonary bypass (CPB) and validates its application in clinical cases. The proposed algorithm involves adjustable parameters based on the oxygenator and fluid types and estimates blood viscosity based on pressure-flow characteristics of the fluid perfusing through the oxygenator. This novel nonlinear model requires four parameters that were derived by in vitro experiments. The results estimated by the proposed method were then compared with a conventional linear model to demonstrate the former's optimal curve fitting. The viscosity (η e ) estimated using the proposed algorithm and the viscosity (η) measured using a viscometer were compared for 20 patients who underwent mildly hypothermic CPB. The developed system was applied to ten patients, and η e was recorded for comparisons with hematocrit and blood temperature. The residual sum of squares between the two curve fittings confirmed the significant difference, with p <; 0.001. η e and η showed a very strong correlation with R 2 = 0.9537 and p <; 0.001. Regarding the mean coefficient of determination for all cases, the hematocrit and temperature showed weak correlations at 0.33 ± 0.14 and 0.22 ± 0.21, respectively. For CPB measurements of all cases, η e was more than 98% distributed in the range from 1 to 3 mPa·s. This new system for estimating viscosity may be useful for detecting various viscosity-related effects that may occur during CPB.