We present a framework for identifying and flagging malfunctioning antennas in large radio interferometers. We outline two distinct categories of metrics designed to detect outliers along known failure modes of large arrays: cross-correlation metrics, based on all antenna pairs, and auto-correlation metrics, based solely on individual antennas. We define and motivate the statistical framework for all metrics used, and present tailored visualizations that aid us in clearly identifying new and existing systematics. We implement these techniques using data from 105 antennas in the Hydrogen Epoch of Reionization Array (HERA) as a case study. Finally, we provide a detailed algorithm for implementing these metrics as flagging tools on real data sets.
ABSTRACT Radio interferometers aiming to measure the power spectrum of the redshifted 21 cm line during the Epoch of Reionization (EoR) need to achieve an unprecedented dynamic range to separate the weak signal from overwhelming foreground emissions. Calibration inaccuracies can compromise the sensitivity of these measurements to the effect that a detection of the EoR is precluded. An alternative to standard analysis techniques makes use of the closure phase, which allows one to bypass antenna-based direction-independent calibration. Similarly to standard approaches, we use a delay spectrum technique to search for the EoR signal. Using 94 nights of data observed with Phase I of the Hydrogen Epoch of Reionization Array (HERA), we place approximate constraints on the 21 cm power spectrum at z = 7.7. We find at 95 per cent confidence that the 21 cm EoR brightness temperature is ≤(372)2 ‘pseudo’ mK2 at 1.14 ‘pseudo’ h Mpc−1, where the ‘pseudo’ emphasizes that these limits are to be interpreted as approximations to the actual distance scales and brightness temperatures. Using a fiducial EoR model, we demonstrate the feasibility of detecting the EoR with the full array. Compared to standard methods, the closure phase processing is relatively simple, thereby providing an important independent check on results derived using visibility intensities, or related.
This paper presents the design and deployment of the Hydrogen Epoch of Reionization Array (HERA) phase II system. HERA is designed as a staged experiment targeting 21 cm emission measurements of the Epoch of Reionization. First results from the phase I array are published as of early 2022, and deployment of the phase II system is nearing completion. We describe the design of the phase II system and discuss progress on commissioning and future upgrades. As HERA is a designated Square Kilometer Array (SKA) pathfinder instrument, we also show a number of "case studies" that investigate systematics seen while commissioning the phase II system, which may be of use in the design and operation of future arrays. Common pathologies are likely to manifest in similar ways across instruments, and many of these sources of contamination can be mitigated once the source is identified.
Abstract This paper presents the design and deployment of the Hydrogen Epoch of Reionization Array (HERA) phase II system. HERA is designed as a staged experiment targeting 21 cm emission measurements of the Epoch of Reionization. First results from the phase I array are published as of early 2022, and deployment of the phase II system is nearing completion. We describe the design of the phase II system and discuss progress on commissioning and future upgrades. As HERA is a designated Square Kilometre Array pathfinder instrument, we also show a number of “case studies” that investigate systematics seen while commissioning the phase II system, which may be of use in the design and operation of future arrays. Common pathologies are likely to manifest in similar ways across instruments, and many of these sources of contamination can be mitigated once the source is identified.
The key to detecting neutral hydrogen during the epoch of reionization (EoR) is to separate the cosmological signal from the dominating foreground radiation. We developed direct optimal mapping (Xu et al. 2022) to map interferometric visibilities; it contains only linear operations, with full knowledge of point spread functions from visibilities to images. Here we present an FFT-based image power spectrum and its window functions based on direct optimal mapping. We use noiseless simulation, based on the Hydrogen Epoch of Reionization Array (HERA) Phase I configuration, to study the image power spectrum properties. The window functions show $<10^{-11}$ power leakage from the foreground-dominated region into the EoR window; the 2D and 1D power spectra also verify the separation between the foregrounds and the EoR. Furthermore, we simulated visibilities from a $uv$-complete array and calculated its image power spectrum. The result shows that the foreground--EoR leakage is further suppressed below $10^{-12}$, dominated by the tapering function sidelobes; the 2D power spectrum does not show signs of the horizon wedge. The $uv$-complete result provides a reference case for future 21cm cosmology array designs.
Abstract We report the most sensitive upper limits to date on the 21 cm epoch of reionization power spectrum using 94 nights of observing with Phase I of the Hydrogen Epoch of Reionization Array (HERA). Using similar analysis techniques as in previously reported limits, we find at 95% confidence that Δ 2 ( k = 0.34 h Mpc −1 ) ≤ 457 mK 2 at z = 7.9 and that Δ 2 ( k = 0.36 h Mpc −1 ) ≤ 3496 mK 2 at z = 10.4, an improvement by a factor of 2.1 and 2.6, respectively. These limits are mostly consistent with thermal noise over a wide range of k after our data quality cuts, despite performing a relatively conservative analysis designed to minimize signal loss. Our results are validated with both statistical tests on the data and end-to-end pipeline simulations. We also report updated constraints on the astrophysics of reionization and the cosmic dawn. Using multiple independent modeling and inference techniques previously employed by HERA Collaboration, we find that the intergalactic medium must have been heated above the adiabatic cooling limit at least as early as z = 10.4, ruling out a broad set of so-called “cold reionization” scenarios. If this heating is due to high-mass X-ray binaries during the cosmic dawn, as is generally believed, our result’s 99% credible interval excludes the local relationship between soft X-ray luminosity and star formation and thus requires heating driven by evolved low-metallicity stars.
Precise measurements of the 21 cm power spectrum are crucial for understanding the physical processes of hydrogen reionization. Currently, this probe is being pursued by low-frequency radio interferometer arrays. As these experiments come closer to making a first detection of the signal, error estimation will play an increasingly important role in setting robust measurements. Using the delay power spectrum approach, we have produced a critical examination of different ways that one can estimate error bars on the power spectrum. We do this through a synthesis of analytic work, simulations of toy models, and tests on small amounts of real data. We find that, although computed independently, the different error bar methodologies are in good agreement with each other in the noise-dominated regime of the power spectrum. For our preferred methodology, the predicted probability distribution function is consistent with the empirical noise power distributions from both simulated and real data. This diagnosis is mainly in support of the forthcoming HERA upper limit, and also is expected to be more generally applicable.
ABSTRACT Radio interferometers targeting the 21cm brightness temperature fluctuations at high redshift are subject to systematic effects that operate over a range of different time-scales. These can be isolated by designing appropriate Fourier filters that operate in fringe-rate (FR) space, the Fourier pair of local sidereal time. Applications of FR filtering include separating effects that are correlated with the rotating sky versus those relative to the ground, down-weighting emission in the primary beam sidelobes, and suppressing noise. FR filtering causes the noise contributions to the visibility data to become correlated in time, however, making interpretation of subsequent averaging and error estimation steps more subtle. In this paper, we describe fringe-rate filters that are implemented using discrete prolate spheroidal sequences, and designed for two different purposes–beam sidelobe/horizon suppression (the ‘mainlobe’ filter), and ground-locked systematics removal (the ‘notch’ filter). We apply these to simulated data, and study how their properties affect visibilities and power spectra generated from the simulations. Included is an introduction to fringe-rate filtering and a demonstration of fringe-rate filters applied to simple situations to aid understanding.