Abstract Heymans, J. J., Howell, K. L., Ayers, M., Burrows, M. T., Gordon, J. D. M., Jones, E. G., and Neat, F. 2011. Do we have enough information to apply the ecosystem approach to management of deep-sea fisheries? An example from the West of Scotland. – ICES Journal of Marine Science, 68: 265–280. There is currently a global call for more use of an ecosystem approach to fisheries management (EAFM), and ecosystem models such as Ecopath with Ecosim (EwE) are being used to provide a holistic view of ecosystem–fisheries interactions. Although these can be useful for an EAFM, the relative paucity of data available for deep-sea ecosystems raises concerns whether we can effectively apply an EAFM to the deep sea. The deep-sea ecosystem off the west coast of Scotland has been studied for longer and in more detail than most. This study assimilates the significant published and unpublished information available on this ecosystem into an EwE model. The results suggest that there are sufficient data available to construct an ecosystem model, but the quality of the data varies and serious potential sources of error are present in biomass and discard estimates. The assumptions needed to produce a model are varied and must be considered when interpreting the outputs of the model. Ecosystem modelling provides a unique view of the deep-water ecosystem and facilitates hypothesis development concerning predator–prey and inter-fishery interactions. Sharks are used to illustrate the benefits of using an ecosystem model to describe changes in their biomass and their prey species. The results show that both fishing for sharks and fishing for their prey affect the biomass of sharks.
Alexander, K. A., P. Kershaw, P. Cooper, A. J. Gilbert, J. M. Hall-Spencer, J. J. Heymans, A. Kannen, H. J. Los, T. O'Higgins, C. O'Mahony, P. Tett, T. A. Troost, and J. van Beusekom. 2015. Challenges of achieving Good Environmental Status in the Northeast Atlantic. Ecology and Society 20(1): 49. https://doi.org/10.5751/ES-07394-200149
Recent decades have witnessed declines in the amount of fishing catch due to changes in the marine ecosystem of the Eastern Mediterranean Sea. These changes are mainly a consequence of direct human activities as well as global warming and the entry of invasive species. Therefore, there is a need to improve fisheries management so that it accounts for the various stressors and uses of the marine environment beyond fishing, while providing sustainable catches and maintaining a healthy ecosystem. The ability to understand, and sustainably manage, the fishing industry relies on models capable of analyzing and predicting the effects of fishing on the entire ecosystem. In this study, we apply Ecospace, the spatial-temporal component of the Ecopath with Ecosim approach, to study the Israeli continental shelf to evaluate the impact of climate change and alternative management options on the ecosystem. We examine several management alternatives under the severe assumption of the RCP8.5 climate change scenario for the region. Results indicate that under business-as-usual conditions, the biomass of the native species will decrease, the biomass of the invasive species will increase, and there will be a decrease in the fishing catch. In addition, of the management alternatives examined, the alternative of prohibition of fishing in the northern region of Israel along with the establishment of a network of marine nature reserves provides the optimal response for the ecosystem and fisheries. The Achziv Nature Reserve is projected to be successful, improving the biomass of local species and reducing, to some extent, the presence of invasive species. These results are consistent with visual surveys conducted inside and outside the reserve by the Israeli Nature and Parks Authority. Furthermore, simulation results indicate spill-over effects in areas close to nature reserves yielding higher catches in those regions.
The EU funded project EuroSea brought together key actors of the European ocean observing and forecasting communities with key users of the ocean observing products and services in order to better integrate existing ocean observation systems and tools, and to improve the delivery of ocean information to users. EuroSea was constructed around the ocean observing value chain that connects observations to users of ocean information, and, just as intended, the value chain concept was a useful prism to improve the system. In this article, we summarize some of the main take-home messages from EuroSea on the needs for developing the European Ocean Observing System and its links with modeling and forecasting systems. During the project, the challenges and gaps in the design and coordination of the European ocean observing and forecasting system were identified and mapped. Many gaps and challenges related to the observations of physical, chemical and biological Essential Ocean Variables were identified. Some of these gaps are related to technological developments, while others are caused by insufficient and short-term funding leading to a not sustainable system, management, and cooperation between different entities, as well as limitations in foresight activities, policies and decisions. This article represents a compilation of the broader needs for advancing the observing and forecasting system, and is meant as a guide for the community, and to funders and investors to advance ocean observing and the delivery of ocean information in Europe. To enhance the sustainability of ocean observations, which is paramount for a reliable provision of quality oceanographic data and services, several recommendations were compiled for ocean observing networks, frameworks, initiatives, as well as the ocean observing funders within the European nations, and the European Commission.