Caffeine, the most widely used psychoactive compound, is an adenosine receptor antagonist. It promotes wakefulness by blocking adenosine A2A receptors (A2ARs) in the brain, but the specific neurons on which caffeine acts to produce arousal have not been identified. Using selective gene deletion strategies based on the Cre/loxP technology in mice and focal RNA interference to silence the expression of A2ARs in rats by local infection with adeno-associated virus carrying short-hairpin RNA, we report that the A2ARs in the shell region of the nucleus accumbens (NAc) are responsible for the effect of caffeine on wakefulness. Caffeine-induced arousal was not affected in rats when A2ARs were focally removed from the NAc core or other A2AR-positive areas of the basal ganglia. Our observations suggest that caffeine promotes arousal by activating pathways that traditionally have been associated with motivational and motor responses in the brain.
Glutamate transporter 1 (GLT1) is the main astrocytic transporter that shapes glutamatergic transmission in the brain. However, whether this transporter modulates sleep–wake regulatory neurons is unknown. Using quantitative immunohistochemical analysis, we assessed perisomatic GLT1 apposition with sleep–wake neurons in the male rat following 6 h sleep deprivation (SD) or following 6 h undisturbed conditions when animals were mostly asleep (Rest). We found that SD decreased perisomatic GLT1 apposition with wake-promoting orexin neurons in the lateral hypothalamus compared with Rest. Reduced GLT1 apposition was associated with tonic presynaptic inhibition of excitatory transmission to these neurons due to the activation of Group III metabotropic glutamate receptors, an effect mimicked by a GLT1 inhibitor in the Rest condition. In contrast, SD resulted in increased GLT1 apposition with sleep-promoting melanin-concentrating hormone (MCH) neurons in the lateral hypothalamus. Functionally, this decreased the postsynaptic response of MCH neurons to high-frequency synaptic activation without changing presynaptic glutamate release. The changes in GLT1 apposition with orexin and MCH neurons were reversed after 3 h of sleep opportunity following 6 h SD. These SD effects were specific to orexin and MCH neurons, as no change in GLT1 apposition was seen in basal forebrain cholinergic or parvalbumin-positive GABA neurons. Thus, within a single hypothalamic area, GLT1 differentially regulates excitatory transmission to wake- and sleep-promoting neurons depending on sleep history. These processes may constitute novel astrocyte-mediated homeostatic mechanisms controlling sleep–wake behavior. SIGNIFICANCE STATEMENT Sleep–wake cycles are regulated by the alternate activation of sleep- and wake-promoting neurons. Whether and how astrocytes can regulate this reciprocal neuronal activity are unclear. Here we report that, within the lateral hypothalamus, where functionally opposite wake-promoting orexin neurons and sleep-promoting melanin-concentrating hormone neurons codistribute, the glutamate transporter GLT1, mainly present on astrocytes, distinctly modulates excitatory transmission in a cell-type-specific manner and according to sleep history. Specifically, GLT1 is reduced around the somata of orexin neurons while increased around melanin-concentrating hormone neurons following sleep deprivation, resulting in different forms of synaptic plasticity. Thus, astrocytes can fine-tune the excitability of functionally discrete neurons via glutamate transport, which may represent novel regulatory mechanisms for sleep.
Tegmental cholinergic neurons vary their discharge patterns across the sleep-wake cycle, and glutamate is suggested to play an important role in determining these firing patterns. Cholinergic and noncholinergic neurons in the mesopontine tegmentum have different susceptibilities to various excitotoxins, presumably because of heterogeneity in the expression of glutamate receptor subtypes in this area. By using a double-labeling procedure that combines nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-diaphorase) histochemistry and avidin-biotin-peroxidase immunocytochemistry with diaminobenzidine as the chromogen, we compared the colocalization of AMPA receptor subunits GluR1, GluR2/3, and GluR4, kainate receptor subunits GluR5/6/7, and an NMDA receptor subunit NMDAR1 on NADPH-diaphorase-positive (cholinergic) neurons in the mesopontine tegmentum. Throughout the brainstem, neurons immunoreactive for GluR2/3 and NMDAR1 were most numerous, whereas neurons labeled for GluR1, GluR4, and GluR5/6/7 were less common. Specifically within the mesopontine tegmentum, the proportion of double-labeled neurons in the diaphorase-containing cell population was highest with GluR1 (43%) and lowest with GluR5/6/7 (12%). Regardless of the receptor subunit type, the greatest numbers of double-labeled neurons were observed in the pedunculopontine tegmental nucleus pars compacta and the fewest in the dorsal aspect of the laterodorsal tegmental nucleus. In addition, there were regional differences in the relative expression of receptor subunits and diaphorase-positive neurons across the subdivisions of the tegmental cholinergic column. Because each ionotropic subunit confers distinctive properties to a receptor channel, the present results suggest that mesopontine cholinergic neurons have nonuniform responses to glutamate and are also discriminable from basal forebrain cholinergic neurons in terms of glutamate receptor configuration.
Recent evidence suggests that synaptic plasticity occurs during homeostatic processes, including sleep-wakefulness regulation, although the underlying mechanisms are not well understood. Polysialylated neural cell adhesion molecule (PSA NCAM) is a transmembrane protein that has been implicated in various forms of plasticity. To investigate whether PSA NCAM is involved in the neuronal plasticity associated with spontaneous sleep-wakefulness regulation and sleep homeostasis, four studies were conducted using rats. First, we showed that PSA NCAM immunoreactivity is present in close proximity to key neurons in several nuclei of the sleep-wakefulness system, including the tuberomammillary hypothalamic nucleus, dorsal raphe nucleus, and locus coeruleus. Second, using western blot analysis and densitometric image analysis of immunoreactivity, we found that 6 h of sleep deprivation changed neither the levels nor the general location of PSA NCAM in the sleep-wakefulness system. Finally, we injected endoneuraminidase (Endo N) intracerebroventricularly to examine the effects of polysialic acid removal on sleep-wakefulness states and electroencephalogram (EEG) slow waves at both baseline and during recovery from 6 h of sleep deprivation. Endo N-treated rats showed a small but significant decrease in baseline rapid eye movement (REM) sleep selectively in the late light phase, and a facilitated REM sleep rebound after sleep deprivation, as compared with saline-injected controls. Non-REM sleep and wakefulness were unaffected by Endo N. These results suggest that PSA NCAM is not particularly involved in the regulation of wakefulness or non-REM sleep, but plays a role in the diurnal pattern of REM sleep as well as in some aspects of REM sleep homeostasis.