In 2022, the European Chemicals Agency issued advice on the selection of high dose levels for developmental and reproductive toxicity (DART) studies indicating that the highest dose tested should aim to induce clear evidence of reproductive toxicity without excessive toxicity and severe suffering in parental animals. In addition, a recent publication advocated that a 10% decrease in body weight gain should be replaced with a 10% decrease in bodyweight as a criterion for dose adequacy. Experts from the European Centre for Ecotoxicology and Toxicology of Chemicals evaluated these recent developments and their potential impact on study outcomes and interpretation and identified that the advice was not aligned with OECD test guidelines or with humane endpoints guidance. Furthermore, data analysis from DART studies indicated that a 10% decrease in maternal body weight during gestation equates to a 25% decrease in body weight gain, which differs from the consensus of experts at a 2010 ILSI/HESI workshop. Dose selection should be based on a biological approach that considers a range of other factors. Excessive dose levels that cause frank toxicity and overwhelm homeostasis should be avoided as they can give rise to effects that are not relevant to human health assessments.
In Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) the criterion for deciding the studies that must be performed is the annual tonnage of the chemical manufactured or imported into the EU. The annual tonnage may be considered as a surrogate for levels of human exposure but this does not take into account the physico-chemical properties and use patterns that determine exposure. Chemicals are classified using data from REACH under areas of health concern covering effects on the skin and eye; sensitisation; acute, repeated and prolonged systemic exposure; effects on genetic material; carcinogenicity; and reproduction and development. We analysed the mandated study lists under REACH for each annual tonnage band in terms of the information they provide on each of the areas of health concern. Using the European Chemicals Agency (ECHA) REACH Registration data base of over 20,000 registered substances, we found that only 19% of registered substances have datasets on all areas of health concern. Information limited to acute exposure, sensitisation and genotoxicity was found for 62%. The analysis highlighted the shortfall of information mandated for substances in the lower tonnage bands. Deploying New Approach Methodologies (NAMs) at this lower tonnage band to assess health concerns which are currently not covered by REACH, such as repeat and extended exposure and carcinogenicity, would provide additional information and would be a way for registrants and regulators to gain experience in the use of NAMs. There are currently projects in Europe aiming to develop NAM-based assessment frameworks and they could find their first use in assessing low tonnage chemicals once confidence has been gained by their evaluation with data rich chemicals.
The endocrine system is responsible for growth, development, maintaining homeostasis and for the control of many physiological processes. Due to the integral nature of its signaling pathways, it can be difficult to distinguish endocrine-mediated adverse effects from transient fluctuations, adaptive/compensatory responses, or adverse effects on the endocrine system that are caused by mechanisms outside the endocrine system. This is particularly true in toxicological studies that require generation of effects through the use of Maximum Tolerated Doses (or Concentrations). Endocrine-mediated adverse effects are those that occur as a consequence of the interaction of a chemical with a specific molecular component of the endocrine system, for example, a hormone receptor. Non-endocrine-mediated adverse effects on the endocrine system are those that occur by other mechanisms. For example, systemic toxicity, which perturbs homeostasis and affects the general well-being of an organism, can affect endocrine signaling. Some organs/tissues can be affected by both endocrine and non-endocrine signals, which must be distinguished. This paper examines in vitro and in vivo endocrine endpoints that can be altered by non-endocrine processes. It recommends an evaluation of these issues in the assessment of effects for the determination of endocrine disrupting properties of chemicals. This underscores the importance of using a formal weight of evidence (WoE) process to evaluate potential endocrine activity.