Gouty arthritis is caused by the deposition of monosodium urate (MSU) crystals in joints. Despite many treatment options for gout, there is a substantial need for alternative treatments for patients unresponsive to current therapies. Tyrosine kinase inhibitors have demonstrated therapeutic benefit in experimental models of antibody-dependent arthritis and in rheumatoid arthritis in humans, but to date, the potential effects of such inhibitors on gouty arthritis has not been evaluated. Here we demonstrate that treatment with the tyrosine kinase inhibitor imatinib mesylate (imatinib) can suppress inflammation induced by injection of MSU crystals into subcutaneous air pouches or into the ankle joint of wild type mice. Moreover, imatinib treatment also largely abolished the lower levels of inflammation which developed in IL-1R1-/- or KitW-sh/W-sh mice, indicating that this drug can inhibit IL-1-independent pathways, as well as mast cell-independent pathways, contributing to pathology in this model. Imatinib treatment not only prevented ankle swelling and synovial inflammation when administered before MSU crystals but also diminished these features when administrated after the injection of MSU crystals, a therapeutic protocol more closely mimicking the clinical situation in which treatment occurs after the development of an acute gout flare. Finally, we also assessed the efficiency of local intra-articular injections of imatinib-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles in this model of acute gout. Treatment with low doses of this long-acting imatinib:PLGA formulation was able to reduce ankle swelling in a therapeutic protocol. Altogether, these results raise the possibility that tyrosine kinase inhibitors might have utility in the treatment of acute gout in humans.
Hydrogen peroxide (H2O2) is produced on stimulation of many cell surface receptors and serves as an intracellular messenger in the regulation of diverse physiological events, mostly by oxidizing cysteine residues of effector proteins. Mammalian cells express multiple H2O2-eliminating enzymes, including catalase, glutathione peroxidase (GPx), and peroxiredoxin (Prx). A conserved cysteine in Prx family members is the site of oxidation by H2O2. Peroxiredoxins possess a high-affinity binding site for H2O2 that is lacking in catalase and GPx and which renders the catalytic cysteine highly susceptible to oxidation, with a rate constant several orders of magnitude greater than that for oxidation of cysteine in most H2O2 effector proteins. Moreover, Prxs are abundant and present in all subcellular compartments. The cysteines of most H2O2 effectors are therefore at a competitive disadvantage for reaction with H2O2. Recent Advances: Here we review intracellular sources of H2O2 as well as H2O2 target proteins classified according to biochemical and cellular function. We then highlight two strategies implemented by cells to overcome the kinetic disadvantage of most target proteins with regard to H2O2-mediated oxidation: transient inactivation of local Prx molecules via phosphorylation, and indirect oxidation of target cysteines via oxidized Prx. Critical Issues and Future Directions: Recent studies suggest that only a small fraction of the total pools of Prxs and H2O2 effector proteins localized in specific subcellular compartments participates in H2O2 signaling. Development of sensitive tools to selectively detect phosphorylated Prxs and oxidized effector proteins is needed to provide further insight into H2O2 signaling. Antioxid. Redox Signal. 28, 537-557.
Abstract We hypothesized that NADPH oxidase 4 (Nox4) is involved in the formation of neointimal atherosclerotic plaques through the migration of smooth muscle cells (SMCs) in response to flagellin. Here, we demonstrate that TLR5-mediated Nox4 activation regulates the migration of SMCs, leading to neointimal plaque formation in atherosclerosis. To investigate the molecular mechanism by which the TLR5-Nox4 cascade mediates SMC migration, we analyzed the signaling cascade in primary vascular SMCs (VSMCs) from wild-type (WT) or Nox4 KO mice. Stimulation of VSMCs from Nox4 KO mice with flagellin failed to induce H 2 O 2 production and Rac activation compared with stimulation of VSMCs from WT mice. Moreover, the migration of Nox4-deficient VSMCs was attenuated in response to flagellin in transwell migration and wound healing assays. Finally, we performed partial carotid artery ligation in ApoE KO and Nox4ApoE DKO mice fed a high-fat diet (HFD) with or without recombinant FliC (rFliC) injection. Injection of rFliC into ApoE KO mice fed a HFD resulted in significantly increased SMC migration into the intimal layer, whereas SMC accumulation was not detected in Nox4ApoE DKO mice. We conclude that activation of the TLR5-Nox4 cascade plays an important role in the formation of neointimal atherosclerotic plaques.
Hydrogen peroxide (H2O2) is an oxidizing agent that induces cellular damage at inappropriate concentrations and gives rise to an arrest during cell cycle progression, causing cell death. Recent evidence indicates that H2O2 also acts as a promoter for cell cycle progression by oxidizing specific thiol proteins. The intracellular concentration of H2O2 is regulated tightly, enabling its use as a cellular signaling molecule while minimizing its potential to cause cellular damage. Peroxiredoxins (Prxs) have peroxidase activity toward H2O2, organic hydroperoxides, and peroxynitrite for protecting cells from oxidative stress. They are suggested to work as signaling mediators, allowing the local accumulation of H2O2 by inactivating their peroxidase activity uniquely compared with other antioxidant proteins such as catalase and glutathione peroxidase. Given that Prxs are highly sensitive to oxidation by H2O2, they act as sensors and transducers of H2O2 signaling via transferring their oxidation state to effector proteins. The concentrations of intracellular H2O2 increase as the cell cycle progresses from G1 to mitosis. Here, we summarize the roles of Prxs with regard to the regulation of cell cycle-dependent kinase activity and anaphase-promoting complex/cyclosome in terms of changes in H2O2 levels. Protection of the cell from unwanted progression of the cell cycle is suggested to be a role of Prx. We discuss the possible roles of Prxs to control H2O2 levels.
The epidermal growth factor receptor (EGFR), a member of ErbB receptor tyrosine kinase (RTK) family, is activated through growth factor-induced reorganization of the actin cytoskeleton and subsequent dimerization. We herein explored the molecular mechanism underlying the suppression of ligand-induced EGFR dimerization by CD99 agonists and its relevance to tumor growth in vivo. Epidermal growth factor (EGF) activated the formation of c-Src/focal adhesion kinase (FAK)-mediated intracellular complex and subsequently induced RhoA-and Rac1-mediated actin remodeling, resulting in EGFR dimerization and endocytosis. In contrast, CD99 agonist facilitated FAK dephosphorylation through the HRAS/ERK/PTPN12 signaling pathway, leading to inhibition of actin cytoskeletal reorganization via inactivation of the RhoA and Rac1 signaling pathways. Moreover, CD99 agonist significantly suppressed tumor growth in a BALB/c mouse model injected with MDA-MB-231 human breast cancer cells. Taken together, these results indicate that CD99-derived agonist ligand inhibits epidermal growth factor (EGF)-induced EGFR dimerization through impairment of cytoskeletal reorganization by PTPN12-dependent c-Src/FAK inactivation, thereby suppressing breast cancer growth.
Hepatitis B virus (HBV) X protein (HBx), encoded by the HBV genome, is involved in the development of HBV-mediated liver cancer, whose frequency is highly correlated with chromosomal instability (CIN). We reported previously that HBx induces mitotic checkpoint dysfunction by targeting the human serine/threonine kinase BubR1 (hBubR1). However, the underlying mechanism remained unresolved. Here, we show that HBx protein-associated protein α (HBxAPα)/Rsf-1 associates with hBubR1 and HBx in the chromatin fraction during mitosis. Depletion of HBxAPα/Rsf-1 abolished the interaction between HBx and hBubR1, indicating that HBxAPα/Rsf-1 mediates these interactions. Knockdown of HBxAPα/Rsf-1 with small interfering RNA did not affect the recruitment of hBubR1 to kinetochores; however, it did significantly impair HBx targeting to kinetochores. A deletion mutant analysis revealed that two Kunitz domains of HBx, the Cdc20-binding domain of hBubR1 and full-length of HBxAPα/Rsf-1 were essential for these interactions. Thus, binding of HBx to hBubR1, stabilized by HBxAPα/Rsf-1, significantly attenuated hBubR1 binding to Cdc20 and consequently increased the rate of mitotic aberrations. Collectively, our data show that the HBx impairs hBubR1 function and induces CIN through HBxAPα/Rsf-1, providing a novel mechanism for induction of genomic instability by a viral pathogen in hepatocarcinogenesis.
One of the current trends in molecular material science concerns the preparation and the study of materials combining several physical properties in a synergistic way. Organic/inorganic hybrids, in which organicor organometallicmoieties having a special physicochemical property are incorporated into a transition-metal cluster, may exhibit certain coupling phenomena between the d-electrons of inorganic transition-metal networks and the mobile πelectrons of the organic conjugated networks. Such coupling effects should provide us with rich opportunities to design and study molecular systems exhibiting special material characteristics, such as superconductivity, magnetism, electrical conductivity, optical properties, electrochromism, and catalytic activity. On the other hand, there is a considerable interest in the chemistry of multi-metallocenyl assemblies, particularly multi-ferrocenyl assemblies. Such compounds can be viewed as excellent candidates for multielectron reservoir systems, electron-transfer mediators, redox active materials for the modification of electrodes, ion sensors and/or materials for electronic devices. In this respect, if one hybridizes the multi-ferrocenyl moieties onto a transitionmetal cluster, the electrical and magnetic properties of both components will be probably combined in a synergistic way, leading to new properties applicable to the material science. However, the chemistry of the transition-metal clusters into which organic and/or organometallic moieties are incorporated, would be difficult to achieve a true advance mainly due to the poorly settled synthetic methods for such molecular assemblies. It is nearly impossible to prepare inorganic clusters having special functionalities in a bondby-bond fashion. One of the most plausible strategies for constructing such systems with their unique architecture will involve one-pot spontaneous self-assembly of components with required functionalities already in place. Such a strategy has been popularly utilized in organic chemistry and supramolecular inorganic chemistry. As an example of the related synthetic efforts, [Ni6(μ3Se)2(μ4-Se)3(dppf)3]Br2·3/2CHCl3 (1) was obtained by the self-assembly reaction of Ni(dppf)Br2 with Li2Se in the presence of Li[PhNC(O)Me] in THF. The first example of the [Ni6(μ3-Se)2(μ4-Se)3] cluster was prepared by the reaction of (NBu3)[NiCl3(PPh3)] with Se(SiMe3)2 and the similar reaction of [NiCl2(PPh3)2] with Se(SiMe3)2 produced [Ni12Se11Cl][NiCl3(PPh3)]2. 13 The structure of the cluster 1 is shown in Figure 1. The production of 1 from the present reaction is ascribed to the directional-bonding influence of the dppf ligand. During the course of the reaction, the fixed distance between the two phosphine atom of the ferrocene bridge may force the selective construction of the present prismatic structure. The existence of Li[PhNC(O)Me] was essential for an effective reaction. Without this anion it takes more than 14 days for the production of 1 to be detected by TLC. It is known that the addition of the [PhNC(O)Me]− ion suppresses the formation of an intractable polymer by complexing to the metal center and the more reactive anion temporarily displaces the less reactive bromide of the nickel before the attack of selenide, leading to the easy production of the cluster. 1 is soluble in THF and CHCl3, moderately soluble in hexane and sparingly soluble in polar solvents. It appears to be stable on exposure to moisture and air. X-ray