Spermatozoa are produced in the testis and undergo post-gonadal modifications in the epididymis to acquire fertilizing ability. In epididymal plasms, high-molecular-weight proteins and such small molecules as free-L carnitine convert the gametes into 'competent' and functional cells. This review summarizes the knowledge pertaining to L-carnitine and the significance of free L-carnitine uptake into the mature spermatozoa of mammals. We provide an overview of the function of free L-carnitine and carnitine esters in the metabolism of eukaryotic cells and review the role of the specific carnitine acyltransferases in mitochondrial transport of fatty acids and in modulating the acyl-coenzyme A (CoA) pools in cellular organelles. In mammals, including man, free L-carnitine is taken from blood plasma and concentrated in the epididymal lumen. This epididymal secretion is beneficial for spermatozoa and is not merely an excretory waste. The uptake of free L-carnitine into the spermatozoa and its metabolic outcome are discussed first in in-vivo and then in in-vitro situations. Free L-carnitine goes through the sperm plasma membrane by passive diffusion. Free L-carnitine is acetylated in mature spermatozoa only. The excess acetyl-CoA from the mitochondria is probably stored as acetyl-L-carnitine and modulates the reserves of free CoA essential to the function of the tricarboxylic acid cycle. These properties of L-carnitine of buffering CoA in the mitochondrial matrix are known in somatic cells but are accentuated in this study of the male germinal cells. In the future, a precise measurement of the in-vivo and in-vitro concentrations of free CoA and acetyl-CoA in the cellular compartments of immature and mature spermatozoa might complete these data. The relationship between the endogenous pools of free and acetylated L-carnitine and the percentage of progressive sperm motility indicates a more important metabolic function related to flagellar movement. In conclusion, the potential to initiate sperm motility, which takes place in the epididymis, is probably independent of the carnitine system, while the energy properties of acetyl-L-carnitine can only be relevant in situations of 'energy crisis'. The uptake of 'cytoplasmic' free L-carnitine in mature spermatozoa must be a protective form of mitochondrial metabolism useful to the survival of this isolated cell.
The mechanism by which a hypo-osmotic shock activates motility of carp spermatozoa was studied. The direct role of osmolality at the axoneme was investigated after demembranation of spermatozoa with Triton X-100 and reactivation in various ionic or anionic solutions containing Mg-ATP: demembranated spermatozoa remain motile in solutions of osmolality up to 550 mOsm kg-1 while non-demembranated spermatozoa are immotile when osmolality rises above 250 mOsm kg-1 with the same salt solutions as well as in non-ionic solutions. Suspension in hypo-osmotic saline solutions triggered the swelling of native carp spermatozoa. No motility or swelling occurred above 200-300 mOsm kg-1 and this osmolality is probably that of the cytosol. The swelling of carp spermatozoa is the result of an entrance of water but this was not affected by pCMBS, an inhibitor of the aquaporin CHIP28, or by various inhibitors of the co-transport of water with ions. Various pharmacological agents that affect the motility of different sperm species had no effect on carp sperm motility when used under similar conditions. However, prolonged exposure to a solution devoid of K+ or Cl- affects the activation of motility in a reversible manner, suggesting that these ions have a role in the perception or transduction of the osmotic signal. Altering the concentration of intracellular second messengers such as Ca2+ and cAMP, and the pH did not affect the motility of carp spermatozoa. However, DMSO at 1-20% (400-3200 mOsm kg-1) affects the motility of carp spermatozoa 3-4 min after mixing. These results show that the activation signal of carp sperm motility differs from that known for spermatozoa of other species of fish such as trout. Our results indicate that the activation mechanism may involve a co-transport of ions or specific 'stretch-activated channels' that are sensitive to osmotic pressure.
Semen parameters of 10 acute hepatitis and 5 chronic carriers were studies. The most common alterations were necrospermia (62% of the patients), teratospermia with irregular shape of the heads (46%), asthenospermia (36%), small volume (33%), and oligospermia (27%). The possible mechanisms of such anomalies are discussed.
Two lines of broilers divergently selected for a high (D+) or a low (D-) AME(n) on a wheat-based diet were studied for morphological and histological characteristics of the digestive tract. A total of 630 birds of both lines were slaughtered after a 23-d feeding period. Digestive tract morphology and intestinal histology were investigated on a total of 24 birds to describe the consequences of divergent selection. Birds of the D+ line had 34% heavier gizzards (P < 0.001) and 22% heavier proventriculi than their D- counterparts. In contrast, intestines were 15 to 40% heavier in D- birds, mainly in the jejunum (P < 0.001) and ileum (P < 0.001). Intestinal segments were also longer (between 3 and 6%) in the D- birds. Intestinal villi were larger and longer in D- birds (P < 0.001), mainly in the jejunum (14 to 16%), and crypts were 10 to 15% deeper for the 3 intestinal segments in D- birds (P < 0.001). Muscle layers of the intestine were 17 to 24% thicker (P < 0.001) and goblet cells were 27 to 34% more numerous in the jejunum and ileum of D- birds (P = 0.027). This new characterization of the 2 lines shows that divergent selection based on AME(n) modified the morphology of the proventriculus and gizzard, suggesting greater activity of this compartment in D+ than in D- birds. Intestinal adaptation revealed by visceral organ weight and length and histological modifications in D- birds can be viewed as an attempt to compensate for the low functionality of the gastric area.
The frequency of spermatozoa bearing one or two fluorescent bodies (FB) has been studied in two series of semen, normal and abnormal (asthenozoospermic). The percentage of spermatozoa with one FB is lower in abnormal semen (41.19% vs 45.82%). On the other hand, there is no significant difference when spermatozoa bearing two FB are compared (1.95% vs 1.90%). Various correlations among semen characteristics were studied, including sperm count, mobility, vitality, percentage of normal forms. Two correlations were found to be significant: positive correlation between the frequency of one FB spermatozoa and mobility and a positive correlation between the frequency of normal forms and the frequency of one FB spermatozoa. The differences between normal and abnormal semen involve only one FB spermatozoa and not those with two FB.
In the epididymal fluid of boars, the concentration of carnitine (nmol/mg protein) began to increase from 20 in the distal caput, then rose progressively to 700 in the distal cauda. By contrast, the carnitine content of spermatozoa only started to increase in the proximal cauda where the concentration of carnitine in the fluid was 200-300 nmol/mg protein then gradually increased in spermatozoa from more distal sites. The increase in the acetylcarnitine content of spermatozoa paralleled that of the carnitine amount and represented 50% of the total carnitine (carnitine + acetylcarnitine). We conclude that the acetylcarnitine content of epididymal spermatozoa may be used as a marker of maturation.