Abstract Antifolates have been used to treat cancer for the last 50 years and remain the mainstay of many therapeutic regimes. Nucleoside salvage, which depends on plasma membrane transport, can compromise the activity of antifolates. The cardiovascular drug dipyridamole inhibits nucleoside transport and enhances antifolate cytotoxicity in vitro, but its clinical activity is compromised by binding to the plasma protein α1-acid glycoprotein (AGP). We report the development of a novel pyrimidopyrimidine analogue of dipyridamole, NU3153, which has equivalent potency to dipyridamole, remains active in the presence of physiologic levels of AGP, inhibits thymidine incorporation into DNA, and prevents thymidine and hypoxanthine rescue from the multitargeted antifolate, pemetrexed. Pharmacokinetic evaluation of NU3153 suggested that a soluble prodrug would improve the in vivo activity. The valine prodrug of NU3153, NU3166, rapidly broke down to NU3153 in vitro and in vivo. Plasma NU3153 concentrations commensurate with rescue inhibition in vitro were maintained for at least 16 hours following administration of NU3166 to mice at 120 mg/kg. However, maximum inhibition of thymidine incorporation into tumors was only 50%, which was insufficient to enhance pemetrexed antitumor activity in vivo. Comparison with the cell-based studies revealed that pemetrexed enhancement requires substantial (≥90%) and durable inhibition of nucleoside transport. In conclusion, we have developed non-AGP binding nucleoside transport inhibitors. Pharmacologically active concentrations of the inhibitors can be achieved in vivo using prodrug approaches, but greater potency is required to evaluate inhibition of nucleoside rescue as a therapeutic maneuver. [Mol Cancer Ther 2009;8(7):1828–37]
Background Asymmetric introduction of fluorine α-to a carbonyl has become popular recently, largely because the direct fluorination of enolates by asymmetric electrophilic fluorinating reagents has improved, and as a result such compounds are becoming attractive synthons. We have sought an alternative but straightforward asymmetric method to this class of compounds, utilising the zwitterionic aza-Claisen rearrangement by reacting α-fluoroacid chlorides and homochiral N-allylpyrrolidines as starting materials. Results Treatment of N-allylmorpholine with 2-fluoropropionyl chloride under Yb(OTf)3 catalysis generated the zwitterionic aza-Claisen rearrangement product in good yield and demonstrated the chemical feasibility of the approach. For the asymmetric reaction, N-allyl-(S)-2-(methoxymethyl)pyrrolidine was treated with either 2-fluoropropionyl chloride or 2-fluorophenylacetic acid chloride under similar conditions and resulted in N-(α-fluoro-γ-vinylamide)pyrrolidine products as homochiral materials in 99% de. These products were readily converted to their corresponding α-fluoro-γ-lactones by iodolactonisation and in good diastereoselectivity. Conclusion Molecules which have fluorine at a stereogeneic centre are finding increasing utility in pharmaceutical, fine chemicals and materials research. The zwitterionic aza-Claisen rearrangement proved to be an effective and competitive complement to asymmetric electrophilic fluorination strategies and provides access to versatile synthetic intermediates with fluorine at the stereogenic centre.
An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.
Supplementary Fig. S2 from Preclinical evaluation of a novel pyrimidopyrimidine for the prevention of nucleoside and nucleobase reversal of antifolate cytotoxicity
A bifunctional catalyst containing a polyether backbone and a nucleophilic imidazole moiety has been prepared that demonstrates cooperative catalysis in the presence of added group 1 and 2 salts for the phosphorylation of alcohols.
<div>Abstract<p>Antifolates have been used to treat cancer for the last 50 years and remain the mainstay of many therapeutic regimes. Nucleoside salvage, which depends on plasma membrane transport, can compromise the activity of antifolates. The cardiovascular drug dipyridamole inhibits nucleoside transport and enhances antifolate cytotoxicity <i>in vitro</i>, but its clinical activity is compromised by binding to the plasma protein α<sub>1</sub>-acid glycoprotein (AGP). We report the development of a novel pyrimidopyrimidine analogue of dipyridamole, NU3153, which has equivalent potency to dipyridamole, remains active in the presence of physiologic levels of AGP, inhibits thymidine incorporation into DNA, and prevents thymidine and hypoxanthine rescue from the multitargeted antifolate, pemetrexed. Pharmacokinetic evaluation of NU3153 suggested that a soluble prodrug would improve the <i>in vivo</i> activity. The valine prodrug of NU3153, NU3166, rapidly broke down to NU3153 <i>in vitro</i> and <i>in vivo</i>. Plasma NU3153 concentrations commensurate with rescue inhibition <i>in vitro</i> were maintained for at least 16 hours following administration of NU3166 to mice at 120 mg/kg. However, maximum inhibition of thymidine incorporation into tumors was only 50%, which was insufficient to enhance pemetrexed antitumor activity <i>in vivo</i>. Comparison with the cell-based studies revealed that pemetrexed enhancement requires substantial (≥90%) and durable inhibition of nucleoside transport. In conclusion, we have developed non-AGP binding nucleoside transport inhibitors. Pharmacologically active concentrations of the inhibitors can be achieved <i>in vivo</i> using prodrug approaches, but greater potency is required to evaluate inhibition of nucleoside rescue as a therapeutic maneuver. [Mol Cancer Ther 2009;8(7):1828–37]</p></div>
The main objectives of this work were to characterise a range of purified recombinant sterol 3β-glucosyltransferases and show that rational sampling of the diversity that exists within sterol 3β-glucosyltransferase sequence space can result in a range of enzyme selectivities. In our study the catalytically active domain of the Saccharomyces cerevisiae 3β-glucosyltransferase was used to mine putative sterol 3β-glucosyltransferases from the databases. Selected diverse sequences were expressed in and purified from Escherichia coli and shown to have different selectivities for the 3β-hydroxysteroids ergosterol and cholesterol. Surprisingly, three enzymes were also selective for testosterone, a 17β-hydroxysteroid. This study therefore reports for the first time sterol 3β-glucosyltransferases with selectivity for both 3β- and 17β-hydroxysteroids and is also the first report of recombinant 3β-glucosyltransferases with selectivity for steroids with a hydroxyl group at positions other than C-3. These enzymes could therefore find utility in the pharmaceutical industry for the green synthesis of a range of glycosylated compounds of medicinal interest.