Cell death from cerebral ischemia is a dynamic process. In the minutes to days after an ischemic insult, progressive changes in cellular morphology occur. Associated with these events is the regulation of competing programs of gene expression; some are protective against ischemic insult, and others contribute to delayed cell death. Many genes involved in these processes have been identified, but individually, these findings have provided only limited insight into the systems biology of cerebral ischemia. Attempts to characterize the coordinated expression of large numbers of genes in cerebral ischemia has only recently become possible. Today, DNA microarray technology provides a powerful tool for investigating parallel expression changes for thousands of genes at one time. In this study, adult mice were subjected to 30 minutes of hypoxia-ischemia (HI), and the hippocampus was examined 12 hours later for differential gene expression using a 15K high-density mouse EST array. The genomic response to HI is complex, affecting approximately 7% of the total number of ESTs examined. Assigning differentially expressed ESTs to molecular functional groups revealed that HI affects many pathways including the molecular chaperones, transcription factors, kinases, and calcium ion binding genes. A comprehensive list of regulated genes should prove valuable in advancing our understanding of the pathogenesis of cerebral ischemia.
One of the proposed mechanisms for the myocardial protective effects of heat shock (HS) treatment has been a reduction in the inflammatory response. The objective of the present study was to evaluate the impact of HS treatment in an established model of polymorphonuclear cell (PMN) migration following myocardial infarction (MI). Isolated purified PMNs (10 x 10(6) cells) labeled with (51)Cr were injected into Lewis rats following a left thoracotomy and ligation of the left anterior descending coronary artery causing MI. Two experimental groups of animals were created: MI group (n = 11) and HS+MI group (n = 7). HS treatment consisted of an elevation in core temperature to 42 degrees C for 15 min 24 h prior to MI. An additional group of control animals underwent sham thoracotomy (n = 5). All animals were euthanized at 24 h after MI, and gamma counts were obtained to estimate PMN migration. Myocardial injury was confirmed in all experimental animals (histology and echocardiography). The serum troponin I and infarct size (triphenyltetrazolium chloride) were similar in both groups. Labeled PMN migration was significantly higher in HS+MI animals (14.3 x 10(4) +/- 3.7 x 10(4) PMN) compared with MI group (9.5 x 10(4) +/- 3.6 x 10(4); P = 0.01), suggesting increased PMN migration as a result of HS treatment. HS treatment did not affect PMN migration to positive skin control sites (LPS). ICAM-1 myocardial expression was not significantly increased in HS+MI compared with MI group. In summary, HS treatment results in increased PMN migration into myocardium following MI independent of ICAM-1. These findings suggest that the proposed cardioprotective effect of HS may not be entirely due to a downregulation of myocardial inflammation as previously proposed.
Hyperthermia induces the synthesis of the 71-kDa heat-shock protein (heat-shock response) in all rat tissues, including heart. We examined whether induction of the heat-shock response alters the response of isolated hearts to ischemia and reperfusion. Anesthetized male rats were pretreated with 15 min of hyperthermia (42 degrees C) and then recovered for 0, 24, 48, 96, or 192 h. Hearts were isolated from control and hyperthermia-treated rats and retrogradely perfused. Greatest recovery occurred in 48-h postheat-shock hearts; after 30 min of reperfusion there was a 38, 62, and 62% recovery of force, +dF/dt, and -dF/dt, respectively, and 17, 36, and 30% recovery, respectively, for the control hearts. Creatine kinase efflux during reperfusion was reduced by 75% for 24-h postheat-shock hearts. The antioxidative enzyme catalase was increased 24, 48, and 96 h posthyperthermia. Treatment of rats with 3-amino-1,2,4-triazole (1 g/kg body wt), which irreversibly inactivates catalase, 30 min before isolation of hearts, abolished the hyperthermia-induced enhancement of postischemic recovery. These results show a strong relationship between the acquisition and decay of the enhanced postischemic ventricular recovery and the hyperthermic induction of the heat-shock response indicated by the accumulation of heat-shock protein HSP71 (mol mass 71 kDa) and the increase in catalase activity.
Abstract Recent declines in the health of honey bee colonies used for crop pollination pose a considerable threat to global food security. Foraging by honey bee workers represents the primary route of exposure to a plethora of toxins and pathogens known to affect bee health, but it remains unclear how foraging preferences impact colony-level patterns of stressor exposure. Resolving this knowledge gap is crucial for enhancing the health of honey bees and the agricultural systems that rely on them for pollination. To address this, we carried out a national-scale experiment encompassing 456 Canadian honey bee colonies to first characterize pollen foraging preferences in relation to major crops, then explore how foraging behaviour influences patterns of stressor exposure. We used a metagenetic approach to quantify honey bee dietary breadth and found that bees display distinct foraging preferences that vary substantially relative to crop type and proximity, and the breadth of foraging interactions can be used to predict the abundance and diversity of stressors a colony is exposed to. Foraging on diverse plant communities was associated with increased exposure to pathogens, while the opposite was associated with increased exposure to xenobiotics. Our work provides the first large-scale empirical evidence that pollen foraging behaviour plays an influential role in determining exposure to dichotomous stressor syndromes in honey bees. Significance Statement Insect-mediated pollination is an important ecological process that is crucial for food production. Managed honey bee colonies are one of the most important insect pollinators, but their health has been under threat from a variety of stressors. Bee workers are primarily exposed to stressors while foraging and understanding how bee foraging preferences are related to exposure risk could provide pivotal information to improve management efforts. Here, we studied honey bee foraging preferences in relation to prominent Canadian crops and across a gradient of modified environments. We found that honey bees show distinct, measurable foraging preferences and that dietary diversity is a strong predictor of the stressors that colonies are exposed to.
The epidemiology of Nosema spp. in honey bees, Apis mellifera, may be affected by winter conditions as cold temperatures and differing wintering methods (indoor and outdoor) provide varying levels of temperature stress and defecation flight opportunities. Across the Canadian Prairies, including Alberta, the length and severity of winter vary among geographic locations. This study investigates the seasonal pattern of Nosema abundance in two Alberta locations using indoor and outdoor wintering methods and its impact on bee population, survival, and commercial viability. This study found that N. ceranae had a distinct seasonal pattern in Alberta, with high spore abundance in spring, declining to low levels in the summer and fall. The results showed that fall Nosema monitoring might not be the best indicator of treatment needs or future colony health outcomes. There was no clear pattern for differences in N. ceranae abundance by location or wintering method. However, wintering method affected survival with colonies wintered indoors having lower mortality and more rapid spring population build-up than outdoor-wintered colonies. The results suggest that the existing Nosema threshold should be reinvestigated with wintering method in mind to provide more favorable outcomes for beekeepers. Average Nosema abundance in the spring was a significant predictor of end-of-study winter colony mortality, highlighting the importance of spring Nosema monitoring and treatments.
Study objective – The aim of the study was to examine the effect of prior induction of the heat shock response on heat shock protein synthesis and physiological variables relevant to the shock response. Design – Synthesis of heat shock protein (SP71, molecular mass 71000) was induced in rats by 15 min hyperthermia (42°C). Protein synthesis, heart rate, blood pressure and creatine kinase activity were determined in comparison with controls (no heat shock) and a group receiving two heat shock treatments 24 h apart (prior induction group). Subjects – 24 male Sprague-Dawley rats (125-150 g) were used, divided into three groups: controls (n=4), heat shock × 1 (HS, n=ll), heat shock × 2 (2×HS, n=9). Heat shock was induced under anaesthesia on a heating pad. Measurements and results – Blood pressure and heart rate were measured at the beginning of the hyperthermia period, when body temperature first reached 42°C (t=0 min) and at the end of the hyperthermia treatment (t=15 min). At t=0 min systolic blood pressure and heart rate were increased compared to the control values in both HS and 2×HS groups. At t=15 min heart rate in the HS group was increased to 554 (SEM21) beats·min−1v control 465(19) (p<0.05). In the 2×HS group, heart rate of 494(14) beats·min−1 at t=15 min was not significantly different from control. At t=15 min, creatine kinase values in the hyperthermia treatment groups were not different from control. However at 2.5 h after hyperthermic treatment plasma creatine kinase was increased in the HS group to 481(83) mU·ml−1 (n=6) v 223(20) in controls, but was not increased in the 2×HS group [178(64), n=4]. Rats were radiolabelled for 2 h with 1.0 mCi of [35S]-methionine 30 min after hyperthermic treatment in HS group and 30 min after the second hyperthermic treatment in 2×HS group. Following the 2×HS treatment, synthesis of SP71, though increased above control values, was lower than in the HS group. Conclusions – The reduction in heart rate, plasma creatine kinase and synthesis of SP71 following a second hyperthermic exposure could be caused by a protective influence of the first exposure.