Mercury (Hg) and stable carbon and nitrogen isotope ratios were analysed in body feathers from nestlings of white-tailed eagles (Haliaeetus albicilla) (WTE; n = 13) and Northern goshawks (Accipiter gentilis) (NG; n = 8) and in red blood cells (RBC) from NG (n = 11) from Norway. According to linear mixed model, species factor was significant in explaining the Hg concentration in feathers (LMM; p < 0.001, estimate (WTE) = 2.51, 95% CI = 1.26, 3.76), with concentrations higher in WTE (3.01 ± 1.34 µg g
In previous studies, feathers of adult predatory birds have been evaluated as valid non-destructive biomonitor matrices for persistent organic pollutants (POPs). In this study, we assessed for the first time the usefulness of nestling raptor feathers for non-destructive biomonitoring of POPs. For this purpose, we collected body feathers and blood of nestlings from three avian top predators from northern Norway: northern goshawks (Accipiter gentilis), white-tailed eagles (Haliaeetus albicilla) and golden eagles (Aquila chrysaetos). We were able to detect a broad spectrum of legacy POPs in the nestling feathers of all three species (Σ PCBs: 6.78–140 ng g− 1; DDE: 3.15–145 ng g− 1; Σ PBDEs: 0.538–7.56 ng g− 1). However, these concentrations were lower compared to other studies on raptor species, probably due to the aspect of monitoring of nestlings instead of adults. Besides their analytical suitability, nestling feathers also appear to be biologically informative: concentrations of most POPs in nestling feathers showed strong and significant correlations with blood plasma concentrations in all species (p < 0.050; 0.775 < r < 0.994). In addition, the reported correlations between feathers and blood plasma were much higher than those previously reported for adult individuals. Accumulation profiles and species-specific differences were in accordance with other toxicological studies on avian species and generally in agreement with the specific ecology of the studied species. In summary, our results indicate that the use of nestling feathers of northern raptors may be a valid and promising non-destructive biomonitoring strategy for POPs in their ecosystems.
Large-scale international monitoring studies are important to assess emission patterns and environmental distributions of organohalogenated contaminants (OHCs) on a worldwide scale. In this study, the presence of OHCs was investigated on three continents (Europe, North America and Australasia), using eggs of starlings (Sturnus vulgaris and Sturnus unicolor) to assess their suitability for large-scale monitoring studies. To the best of our knowledge, this is the first study using bird eggs of the same species as a biomonitor for OHCs on an intercontinental scale. We found significant differences in OHC concentrations of the eggs among sampling locations, except for hexachlorocyclohexanes (HCHs). Mean concentrations of sum polychlorinated biphenyls (PCBs) in eggs ranged from 78±26 ng/glipid weight (lw) in Australia to 2900±1300 ng/g lw in the United States. The PCB profile was dominated by CB 153 and CB 138 in all locations, except for New Zealand, where the contribution of CB 95, CB 101 and CB 149 was also high. The highest mean sum polybrominated diphenyl ether (PBDE) concentrations were found in Canada (4400±830 ng/g lw), while the lowest mean PBDE concentrations were measured in Spain (3.7±0.1 ng/g lw). The PBDE profile in starling eggs was dominated by BDE 47 and BDE 99 in all countries, but in Belgium, the higher brominated PBDEs had a higher contribution compared to other countries. For the organochlorine pesticides (OCPs), dichlorodiphenyltrichloroethanes (DDTs) ranged from 110±16 ng/g lw in France to 17,000±3400 ng/g lw in New Zealand, while HCHs and hexachlorobenzene were generally in low concentrations in all sampling locations. Chlordanes were remarkably high in eggs from the United States (2500±1300 ng/g lw). The OCP profile in all countries was largely dominated by p,p'-DDE. In general, the worldwide trends we observed in starling eggs were in accordance with the literature on human and environmental OHC data, which suggests that there is potential for using starling eggs as a biomonitoring tool on a large geographical scale.
The monitoring of different types of pollutants that are released into the environment and that present risks for both humans and wildlife has become increasingly important. In this study, we examined whether feathers of predatory birds can be used as a non-destructive biomonitor of organic pollutants. We demonstrate that polychlorinated biphenyls (PCBs), dichlorodiphenyltrichloroethane (DDT) and polybrominated diphenyl ethers (PBDEs) are measurable in one single tail feather of common buzzards ( Buteo buteo ) and that levels in this feather and internal tissues are significantly related to each other (0.35< r <0.76 for all 43 buzzards; 0.46< r <0.84 when excluding 17 starved birds). Our findings provide the first indication that feathers of predatory birds could be useful in non-destructive biomonitoring of organic pollutants, although further validation may be necessary.
Biomagnification of Hg and persistent organic pollutants (POPs: polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), polybrominated diphenyl ethers (PBDEs)) in aquatic food chains can lead to high pollutant concentrations in top predators, including humans. Despite this threat to human health, research concerning bioaccumulation is still underrepresented in the southern hemisphere and in (sub)arctic and (sub)tropical areas, emphasizing the need for research in these locations. In this study, samples of water, sediment and aquatic biota were analyzed to determine concentrations of POPs and total mercury (THg) in the Ga-Selati river (South Africa) and two rivers Rena and Gudbrandsdalslågen in Norway. Trophic magnification factors (TMFs) were determined to evaluate and compare the biomagnification and the threat to human health due to consumption of the fish was assessed. Concentrations of POPs in sediment and biota samples were generally low except for relatively high concentrations of ∑DDX (dichlorodiphenyltrichloroethane and metabolites) in aquatic biota from the Ga-Selati river (ranging from 1.9 to 133 ng/g ww in invertebrates and 1.9 to 5643 ng/g ww in fish). Dissolved THg concentrations were high in the Ga-Selati river (ranging from 0.009 to 0.036 μg/l) but THg concentrations in sediment and biota were low in studied rivers compared to other studies. Biomagnification occurred for THg, several DDT-metabolites and PCB compounds, TN and CN. Biomagnification of p,p′-DDT and THg differed significantly between the two countries, supporting existing patterns found in literature, although more data is needed to attribute these differences to climatic or other factors. Concentrations in fish from the rivers Ga-Selati and Rena were under the threshold levels reported for THg and POPs, but caution should be taken when consuming Northern pike (Esox Lucius) from the subarctic river Gudbrandsdalslågen, to avoid harmful effects due to both elevated THg and PBDE exposure.
We investigated the effects of parasite removal on various blood clinical–chemical variables (BCCVs). BCCVs are indicators of health, reflecting, e.g., homeostasis of liver, kidney function, and bone metabolism. The study was conducted in Norway on chicks of two predatory birds: White-tailed Eagle (Haliaeetus albicilla (L., 1758)) and Northern Goshawk (Accipiter gentilis (L., 1758)). Chicks were treated against both endoparasites (internal parasites) and ectoparasites (external parasites). We treated against ectoparasites by spraying nests with pyrethrins. Within nests, chicks were randomly treated with either an anti-helminthic medication (fenbendazole) or sterile water (controls). Treatment against either ectoparasites or endoparasites led to higher levels of the bone and liver enzyme alkaline phosphatase. Bilirubin levels were lower when treated against ectoparasites, whereas bile acids were higher. Anti-endoparasite treatment led to higher creatinine levels. In Northern Goshawks, treating against endoparasites led to higher urea levels and lower potassium levels. Treatment against ectoparasites increased uric acid and urea levels and reduced bilirubin levels and protein:creatinine ratios. In conclusion, anti-parasite treatments led to changes in several BCCVs, suggesting differences in nutrient absorption and physiological state of chicks that are possibly related to the costs of parasitism, but maybe also to the parasite treatment itself.
Airborne pesticide drift poses a substantial environmental threat in agriculture, affecting ecosystems far from the application sites. This process, in which up to 25% of applied pesticides are carried by air currents, can transport chemicals over hundreds or even thousands of kilometers. Drift rates peak during the summer months, reaching as high as 60%, and are influenced by various factors, including wind speed, temperature, humidity, and soil type. Pesticide volatilization is a significant concern, occurring 25 times more frequently than surface runoff. Under certain conditions, it can result in chemical losses of compounds like metolachlor and atrazine that are up to 150 times higher. These drifting pesticides have profound impacts on biodiversity, harming non-target plants, insects, fungi, and other organisms both near application sites and in distant ecosystems. Pesticide drift has been linked to over 50% reductions in wild plant diversity within 500 m of fields, reducing floral resources for pollinators. Despite growing evidence of these effects, the long-term consequences of airborne pesticides on biodiversity remain poorly understood, especially in complex field conditions with multiple pesticide applications. Addressing this requires urgent measures, such as improved meteorological tracking during applications, adoption of biopesticides, and integrated pest management strategies. This review highlights the pressing need for research to quantify airborne pesticides' ecological impacts, advocating for sustainable practices to mitigate environmental damage.
Japanese quails (Coturnix japonica) were exposed in ovo to tris(1,3-dichloro-2-propyl) phosphate (TDCIPP; 500 ng/µl), Dechlorane Plus (DP; 500 ng/µl), or a 1:1 mixture of these two to investigate the effects on liver and thyroid gland morphology. Histological examination of 14-day-old quails showed that exposure to TDCIPP or the mixture induced hepatic sinusoidal dilatation. No marked effects were seen for DP alone. In addition, the mixture produced divergence of thyroid gland follicles and proliferation of follicular cells. Our study is the first demonstrating histopathological alterations as a result of exposure during early development to the flame retardants TDCIPP or a TDCIPP–DP mixture suggesting the need for further research efforts to investigate potential adverse health effects associated with exposure to these environmental chemicals in wild birds.