Periodontitis, a chronic infection causing periodontal tissue loss, may be effectively addressed with in situ tissue engineering. Small intestinal submucosa (SIS) offers exceptional biocompatibility and biodegradability but lacks sufficient osteoconductive and osteoinductive properties. This study develops and characterizes SIS coated with hydroxyapatite (SIS-HA) and gelatin methacrylate hydroxyapatite (SIS-Gel-HA) using biomineralization and chemical crosslinking. The impact on periodontal tissue regeneration is assessed by evaluating macrophage immune response and osteogenic differentiation potential of periodontal ligament stem cells (PDLSCs) in vitro and rat periodontal defects in vivo. The jejunum segment, with the highest collagen type I content, is optimal for SIS preparation. SIS retains collagen fiber structure and bioactive factors. Calcium content is 2.21% in SIS-HA and 2.45% in SIS-Gel-HA, with no significant differences in hydrophilicity, physicochemical properties, protein composition, or biocompatibility among SIS, SIS-HA, SIS-Gel, and SIS-Gel-HA. SIS is found to upregulate M2 marker expression, both SIS-HA and SIS-Gel-HA enhance the osteogenic differentiation of PDLSCs through the BMP-2/Smad signaling pathway, and SIS-HA demonstrates superior in vitro osteogenic activity. In vivo, SIS-HA and SIS-Gel-HA yield denser, more mature bones with the highest BMP-2 and Smad expression. SIS-HA and SIS-Gel-HA demonstrate enhanced immunity-osteogenesis coupling, representing a promising periodontal tissue regeneration approach.
C-reactive protein (CRP) has been shown to be closely associated with coronary heart disease. The serum CRP concentrations of chronic periodontitis (CP) patients were increased due to periodontal inflammation. CRP may be a potential key mediator associating CP with coronary heart disease. This study aimed to investigate the effects of CRP on human endothelial cells in vitro. CRP ranging from 0 to 10 μg/mL was adopted to imitate the chronic inflammatory conditions of periodontitis. The influences of CRP on proliferation, apoptosis, and monocyte chemotactic protein-1 (MCP-1) production of human umbilical vein endothelial cells (HUVECs) were studied through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, flow cytometry, and enzyme-linked immunosorbent assay analysis, respectively. Compared to the blank control, 2.5 and 5.0 μg/mL CRP significantly suppressed cell proliferation by 6.9% and increased apoptosis by 10.2% and 14.6%, respectively (p < 0.05). Concentrations of 7.5 and 10.0 μg/mL CRP also induced 2.3% HUVEC proliferation suppression (p > 0.05) and significantly increased apoptosis ratio compared to that of the blank control. CRP could promote MCP-1 production of HUVECs in a concentration-dependent manner. The MCP-1 production of 10.0 μg/mL CRP group was about 15.3% higher than that of the control group. It is concluded that low concentrations of CRP, which appears in CP, inhibits cell proliferation, promotes cell apoptosis, and increases MCP-1 production in endothelium, which may initiate self-repairing function of vascular endothelium following vascular injury process.
Lipopolysaccharide (LPS) pretreatment can enhance the therapeutic effect of dental follicle stem cells-derived small extracellular vesicles (DFC-sEV) for periodontitis, and this study aimed to investigate the underlying mechanisms and clinical application Of LPS-preconditioned DFC-sEV in periodontitis.The protein spectrum of DFC-sEV before and after LPS pretreatment was determined by liquid chromatography-tandem mass spectrometry and bioinformatic analysis. Their effects on inflammatory periodontal ligament stem cells (PDLSCs) and macrophages were investigated for cell proliferation, migration, type 2 macrophage (M2) polarization, and intracellular reactive oxygen species (ROS) levels separately. In addition, the regulation of ROS/Jun amino-terminal kinases (JNK) and ROS/extracellular signal-related kinases (ERK) signaling by LPS-preconditioned DFC-sEV was also studied to reveal the antioxidant mechanism. In vivo, two kinds of DFC-sEV loaded with 0.2% hyaluronic acid (HA) gel were applied for canine periodontitis to evaluate the therapeutic potential.The proteomic analysis showed that thirty-eight proteins were differentially expressed in LPS-preconditioned DFC-sEV, and interestingly, the highly expressed proteins were mainly involved in antioxidant and enzyme-regulating activities. In addition to promoting PDLSCs and macrophage proliferation, LPS-preconditioned DFC-sEV inhibited intracellular ROS as an antioxidant. It reduced the RANKL/OPG ratio of PDLSCs by inhibiting ROS/JNK signaling under inflammatory conditions and promoted macrophages to polarize toward the M2 phenotype via ROS/ERK signaling. Furthermore, LPS-preconditioned DFC-sEV loaded with the HA injectable system could sustainably release sEV and enhance the therapeutic efficacy for periodontitis in canines.LPS-preconditioned DFC-sEV could be effectively used as an auxiliary method for periodontitis treatment via antioxidant effects in a subgingival environment, and loading it with HA is feasible and effective for clinical applications.
Drug-induced gingival overgrowth (DIGO) is characterized by fibrous gingival hyperplasia and increased gingival volume. DIGO is histologically associated with proliferation of cells and deposition of extracellular matrices, particularly collagen. Integrin α2β1 is related to collagen phagocytosis and involved in the occurrence and progression of DIGO. This paper reviews the progress of research on the relationship between integrin α2β1 and DIGO.药物性牙龈增生(DIGO)是指长期服用某些药物而引起的牙龈组织的纤维性增生和体积增大。牙龈细胞增多与胞外基质尤其是胶原蛋白的大量沉积是其主要病理表现。近年来研究表明,整合素α2β1与胶原吞噬作用密切相关,在DIGO的发生发展中发挥了重要作用。本文就整合素α2β1与DIGO相关性的研究进展进行综述。.
Periodontal ligament cell (PDLC) sheets have been shown to contribute to periodontal tissue regeneration. Dental follicle cells (DFCs), acknowledged as the precursor cells of PDLCs, have demonstrated stemness, embryonic features, heterogeneity, and pluripotency. Therefore, we hypothesized that DFC sheets might be more effective and suitable for periodontal tissue regeneration than PDLC sheets. In this study, we compared the biological characteristics of DFC sheets and PDLC sheets in vitro. To investigate the potential for periodontal tissue regeneration in vivo, complexes composed of two types of cell sheets combined with dentin matrix were implanted subcutaneously into nude mice for 6 weeks. Our results showed that, when forming cell sheets, DFCs secreted richer extracellular matrix than PDLCs. And compared to DFCs, DFC sheets expressed high levels of calcification-related genes, including alkaline phosphatase ( alp), bone sialoprotein ( bsp), osteopontin ( opn), runt-related transcription factor ( runx2), as well as the periodontal ligament-specific genes collagen III ( col III) and periostin, while the gene expression of bsp, osteocalcin ( ocn), and opn were greatly increased in PDLC sheets, when compared to PDLCs. col I expression did not change significantly. However, cementum protein 23 ( cp-23) expression increased several fold in PDLC sheets compared to PDLCs but decreased in DFC sheets compared to DFCs. DFC and PDLC sheets were both positive for Collagen I (Col I), cementum attachment protein (CAP), ALP, BSP, OCN, and OPN protein expression, and Col I, ALP, BSP, and OPN expression were increased after cell sheets were formed. Furthermore, the levels of laminin and fibronectin were higher in DFCs and DFC sheets than that of PDLCs and PDLC sheets, respectively. In vivo, DFC and PDLC sheets could both regenerate periodontal tissue-like structures, but DFC sheets demonstrated stronger periodontal regeneration potential than PDLC sheets. Therefore, DFC sheets derived from discarded dental follicle tissue after tooth extraction may be more advantageous for clinical periodontal tissue regeneration in the future.