The implementation of shape-memory effects (SME) in polymeric micro- or nano-objects currently relies on the application of indirect macroscopic manipulation techniques, for example, stretchable molds or phantoms, to ensembles of small objects. Here, we introduce a method capable of the controlled manipulation and SME quantification of individual micro- and nano-objects in analogy to macroscopic thermomechanical test procedures. An atomic force microscope was utilized to address individual electro-spun poly(ether urethane) (PEU) micro- or nanowires freely suspended between two micropillars on a micro-structured silicon substrate. In this way, programming strains of 10±1% or 21±1% were realized, which could be successfully fixed. An almost complete restoration of the original free-suspended shape during heating confirmed the excellent shape-memory performance of the PEU wires. Apparent recovery stresses of σmax,app =1.2±0.1 and 33.3±0.1 MPa were obtained for a single microwire and nanowire, respectively. The universal AFM test platform described here enables the implementation and quantification of a thermomechanically induced function for individual polymeric micro- and nanosystems.
We aimed to assess symptoms in patients after SARS-CoV-2 infection and to identify factors predicting prolonged time to symptom-free.COVIDOM/NAPKON-POP is a population-based prospective cohort of adults whose first on-site visits were scheduled ≥ 6 months after a positive SARS-CoV-2 PCR test. Retrospective data including self-reported symptoms and time to symptom-free were collected during the survey before a site visit. In the survival analyses, being symptom-free served as the event and time to be symptom-free as the time variable. Data were visualized with Kaplan-Meier curves, differences were tested with log-rank tests. A stratified Cox proportional hazard model was used to estimate adjusted hazard ratios (aHRs) of predictors, with aHR < 1 indicating a longer time to symptom-free.Of 1175 symptomatic participants included in the present analysis, 636 (54.1%) reported persistent symptoms after 280 days (SD 68) post infection. 25% of participants were free from symptoms after 18 days [quartiles: 14, 21]. Factors associated with prolonged time to symptom-free were age 49-59 years compared to < 49 years (aHR 0.70, 95% CI 0.56-0.87), female sex (aHR 0.78, 95% CI 0.65-0.93), lower educational level (aHR 0.77, 95% CI 0.64-0.93), living with a partner (aHR 0.81, 95% CI 0.66-0.99), low resilience (aHR 0.65, 95% CI 0.47-0.90), steroid treatment (aHR 0.22, 95% CI 0.05-0.90) and no medication (aHR 0.74, 95% CI 0.62-0.89) during acute infection.In the studied population, COVID-19 symptoms had resolved in one-quarter of participants within 18 days, and in 34.5% within 28 days. Over half of the participants reported COVID-19-related symptoms 9 months after infection. Symptom persistence was predominantly determined by participant's characteristics that are difficult to modify.
In biomaterial development, the design of material surfaces that mimic the extra-cellular matrix (ECM) in order to achieve favorable cellular instruction is rather challenging. Collagen-type IV (Col-IV), the major scaffolding component of Basement Membranes (BM), a specialized ECM with multiple biological functions, has the propensity to form networks by self-assembly and supports adhesion of cells such as endothelial cells or stem cells. The preparation of biomimetic Col-IV network-like layers to direct cell responses is difficult. We hypothesize that the morphology of the layer, and especially the density of the available adhesion sites, regulates the cellular adhesion to the layer. The Langmuir monolayer technique allows for preparation of thin layers with precisely controlled packing density at the air–water (A–W) interface. Transferring these layers onto cell culture substrates using the Langmuir–Schäfer (LS) technique should therefore provide a pathway for preparation of BM mimicking layers with controlled cell adherence properties. In situ characterization using ellipsometry and polarization modulation-infrared reflection absorption spectroscopy of Col-IV layer during compression at the A–W interface reveal that there is linear increase of surface molecule concentration with negligible orientational changes up to a surface pressure of 25 mN m−1. Smooth and homogeneous Col-IV network-like layers are successfully transferred by LS method at 15 mN m−1 onto poly(ethylene terephthalate) (PET), which is a common substrate for cell culture. In contrast, the organization of Col-IV on PET prepared by the traditionally employed solution deposition method results in rather inhomogeneous layers with the appearance of aggregates and multilayers. Progressive increase in the number of early adherent mesenchymal stem cells (MSCs) after 24 h by controlling the areal Col-IV density by LS transfer at 10, 15 and 20 mN m−1 on PET is shown. The LS method offers the possibility to control protein characteristics on biomaterial surfaces such as molecular density and thereby, modulate cell responses.
We report on the experimental and theoretical investigation of a considerable increase in the rate for thermal cis → trans isomerization of azobenzene-containing molecules in the presence of gold nanoparticles. Experimentally, by means of UV–vis spectroscopy, we studied a series of azobenzene-containing surfactants and 4-nitroazobenzene. We found that in the presence of gold nanoparticles the thermal lifetime of the cis isomer of the azobenzene-containing molecules was decreased by up to 3 orders of magnitude in comparison to the lifetime in solution without nanoparticles. The electron transfer between azobenzene-containing molecules and a surface of gold nanoparticles is a possible reason to promote the thermal cis → trans switching. To investigate the effect of electron attachment to, and withdrawal from, the azobenzene-containing molecules on the isomerization rate, we performed density functional theory calculations of activation energy barriers of the reaction together with Eyring's transition state theory calculations of the rates for azobenzene derivatives with donor and acceptor groups in para position of one of the phenyl rings, as well as for one of the azobenzene-containing surfactants. We found that activation barriers are greatly lowered for azobenzene-containing molecules, both upon electron attachment and withdrawal, which leads, in turn, to a dramatic increase in the thermal isomerization rate.