The effect of inhalational anesthetics on myocardial contraction and energetics in type 2 diabetes mellitus is unknown. We investigated the effect of isoflurane (ISO) on force and intracellular Ca(2+) transient (iCa), myocardial oxygen consumption (MVo(2)), and energetics/redox behavior in trabecular muscles from Zucker diabetic fatty (ZDF) rats. At baseline, force and corresponding iCa were lower in ZDF trabeculae than in controls. ISO decreased force in both groups in a dose-dependent manner. ISO did not affect iCa amplitude in controls, but ISO > 1.5% significantly reduced iCa amplitude in ZDF trabeculae. ISO-induced force depression fully recovered as a result of increased iCa when external Ca(2+) was raised in controls. However, both force and iCa remained low in ZDF muscle at elevated external Ca(2+). In controls, force, iCa, and MVo(2) increased when stimulation frequency was increased from 0.5 to 1.5 Hz. ZDF muscles, however, exhibited blunted responses in force and iCa and decreased MVo(2). Oxidative stress levels were unchanged in control muscles but increased significantly in ZDF muscles after exposure to ISO. Finally, the depressive effect of ISO was prevented by 4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl (Tempol) in ZDF muscles. These findings suggest that ISO dose-dependently attenuates force in control and ZDF muscles with differential effect on iCa. The mechanism of force depression by ISO in controls is mainly decreased myofilament Ca(2+) sensitivity, whereas in ZDF muscles the ISO-induced decrease in contraction is due to worsening oxidative stress, which inhibits iCa and force development.
Salinity stress is one of the most prominent abiotic stresses that negatively affect crop production. Transcription factors (TFs) are involved in the absorption, transport, or compartmentation of sodium (Na+) or potassium (K+) to resist salt stress. The basic helix–loop–helix (bHLH) is a TF gene family critical for plant growth and stress responses, including salinity. Herein, we used the CRISPR/Cas9 strategy to generate the gene editing mutant to investigate the role of OsbHLH024 in rice under salt stress. The A nucleotide base deletion was identified in the osbhlh024 mutant (A91). Exposure of the A91 under salt stress resulted in a significant increase in the shoot weight, the total chlorophyll content, and the chlorophyll fluorescence. Moreover, high antioxidant activities coincided with less reactive oxygen species (ROS) and stabilized levels of MDA in the A91. This better control of oxidative stress was accompanied by fewer Na+ but more K+, and a balanced level of Ca2+, Zn2+, and Mg2+ in the shoot and root of the A91, allowing it to withstand salt stress. Furthermore, the A91 also presented a significantly up-regulated expression of the ion transporter genes (OsHKT1;3, OsHAK7, and OsSOS1) in the shoot when exposed to salt stress. These findings imply that the OsbHLH024 might play the role of a negative regulator of salt stress, which will help to understand better the molecular basis of rice production improvement under salt stress.
Abstract Background The Surgical Pleth Index (SPI) is an objective tool that can reflect nociception-antinociception balance and guide the use of intraoperative analgesics. Multimodal analgesia has been neglected in many previous studies. The aim of this study was to compare fentanyl consumption using SPI-guided analgesia versus conventional analgesia techniques under multimodal analgesia in laparoscopic cholecystectomy. Methods A total of 80 patients aged 18–65 years with American Society of Anaesthesiologists (ASA) grade I-II and a body mass index (BMI) of 18.5 to 30 kg/m2 who were scheduled for laparoscopic cholecystectomy under total intravenous anaesthesia from March 2020 to September 2020 were selected. Multimodal analgesia, including local infiltration of the surgical incision, nonsteroidal anti-inflammatory drugs and opioids, was adopted perioperatively. Fentanyl boluses of 1.0 µg/kg were administered to maintain the SPI value between 20 and 50 in the SPI group. By contrast, fentanyl boluses of 1.0 µg/kg were administered whenever the heart rate (HR) or mean arterial pressure (MAP) increased to 20 % above baseline or when the HR was greater than 90 beats per minute (bpm) in the control group. Preoperative and postoperative blood glucose, plasma cortisol and interleukin-6 (IL-6) levels were evaluated. Intraoperative haemodynamic events and propofol and fentanyl doses were noted. The extubation time, postoperative visual analogue scale (VAS) score, use of remedial analgesics and opioid-related adverse reactions were recorded. Results In total, 18 of 80 patients withdrew for various reasons, and data from 62 patients were finally analysed. Intraoperative fentanyl consumption was significantly lower in the SPI group than in the control group (177.1 ± 65.9 vs. 213.5 ± 47.5, P = 0.016). The postoperative extubation time was shorter in the SPI group than in the control group (16.1 ± 5.2 vs. 22.1 ± 6.3, P < 0.001). Preoperative and postoperative blood glucose, plasma cortisol and IL-6 levels, intraoperative haemodynamic changes, postoperative VAS scores, remedial analgesic consumption and opioid-related adverse reactions were comparable in the two groups. Conclusions Lower doses of fentanyl are required intraoperatively with shorter extubation times when SPI is used to guide intraoperative analgesia compared to conventional analgesia techniques under multimodal analgesia in laparoscopic cholecystectomy. Trial registration Chictr.org.cn ChiCTR2000030145 . Retrospectively Registered (Date of registration: February 24, 2020).
To explore the anesthetic management experiences of patients with Stanford A aortic dissection undergoing surgical treatment through moderate or deep hypothermia circulatory arrest (DHCA).From June 2008 to December 2011, a total of 77 patients undergoing surgical treatment of Stanford A aortic dissection was recruited.Cardiopulmonary bypass (CPB) was established under general anesthesia in all patients. The procedures included moderate hypothermia (n = 51) and DHCA (n = 26). The total surgical duration was 152 - 600 (292 ± 91) min, CPB time 38 - 310 (128 ± 43) min and aortic cross-clamp time 31 - 169 (87 ± 26) min. The time of circulatory arrest under deep hypothermia was 20 - 113 (41 ± 19) min in 26 patients. Among 77 patients, there were 5 intraoperative and 7 postoperative fatalities. The remained 65 patients were discharged postoperatively and received a regular outpatient follow-up. None of them died or required reoperation.Surgical treatment is appropriate and efficient for the patients with Stanford A aortic dissection. During surgery, the keys of preventing neurological complications are blood volume monitoring and blood protection.
Zea mays, commonly known as corn, is perhaps the most greatly produced crop in terms of tonnage and a major food, feed, and biofuel resource. Here we analyzed its prolamin gene family, encoding the major seed storage proteins, as a model for gene evolution by syntenic alignments with sorghum and rice, two genomes that have been sequenced recently. Because a high-density gene map has been constructed for maize inbred B73, all prolamin gene copies can be identified in their chromosomal context. Alignment of respective chromosomal regions of these species via conserved genes allow us to identify the pedigree of prolamin gene copies in space and time. Its youngest and largest gene family, the alpha prolamins, arose about 22-26 million years ago (Mya) after the split of the Panicoideae (including maize, sorghum, and millet) from the Pooideae (including wheat, barley, and oats) and Oryzoideae (rice). The first dispersal of alpha prolamin gene copies occurred before the split of the progenitors of maize and sorghum about 11.9 Mya. One of the two progenitors of maize gained a new alpha zein locus, absent in the other lineage, to form a nonduplicated locus in maize after allotetraplodization about 4.8 Mya. But dispersed copies gave rise to tandem duplications through uneven expansion and gene silencing of this gene family in maize and sorghum, possibly because of maize's greater recombination and mutation rates resulting from its diploidization process. Interestingly, new gene loci in maize represent junctions of ancestral chromosome fragments and sites of new centromeres in sorghum and rice.